Properties

Label 9075.3316
Modulus $9075$
Conductor $3025$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,22,14]))
 
Copy content pari:[g,chi] = znchar(Mod(3316,9075))
 

Basic properties

Modulus: \(9075\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(55\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3025}(291,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9075.dx

\(\chi_{9075}(16,\cdot)\) \(\chi_{9075}(256,\cdot)\) \(\chi_{9075}(361,\cdot)\) \(\chi_{9075}(796,\cdot)\) \(\chi_{9075}(841,\cdot)\) \(\chi_{9075}(1081,\cdot)\) \(\chi_{9075}(1186,\cdot)\) \(\chi_{9075}(1621,\cdot)\) \(\chi_{9075}(1666,\cdot)\) \(\chi_{9075}(1906,\cdot)\) \(\chi_{9075}(2011,\cdot)\) \(\chi_{9075}(2446,\cdot)\) \(\chi_{9075}(2491,\cdot)\) \(\chi_{9075}(2731,\cdot)\) \(\chi_{9075}(2836,\cdot)\) \(\chi_{9075}(3271,\cdot)\) \(\chi_{9075}(3316,\cdot)\) \(\chi_{9075}(3556,\cdot)\) \(\chi_{9075}(3661,\cdot)\) \(\chi_{9075}(4096,\cdot)\) \(\chi_{9075}(4381,\cdot)\) \(\chi_{9075}(4966,\cdot)\) \(\chi_{9075}(5311,\cdot)\) \(\chi_{9075}(5746,\cdot)\) \(\chi_{9075}(5791,\cdot)\) \(\chi_{9075}(6031,\cdot)\) \(\chi_{9075}(6136,\cdot)\) \(\chi_{9075}(6571,\cdot)\) \(\chi_{9075}(6616,\cdot)\) \(\chi_{9075}(6856,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

\((3026,727,5326)\) → \((1,e\left(\frac{1}{5}\right),e\left(\frac{7}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 9075 }(3316, a) \) \(1\)\(1\)\(e\left(\frac{18}{55}\right)\)\(e\left(\frac{36}{55}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{54}{55}\right)\)\(e\left(\frac{36}{55}\right)\)\(e\left(\frac{12}{55}\right)\)\(e\left(\frac{17}{55}\right)\)\(e\left(\frac{46}{55}\right)\)\(e\left(\frac{9}{55}\right)\)\(e\left(\frac{6}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9075 }(3316,a) \;\) at \(\;a = \) e.g. 2