sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([22,14]))
pari:[g,chi] = znchar(Mod(291,3025))
Modulus: | \(3025\) | |
Conductor: | \(3025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(55\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3025}(16,\cdot)\)
\(\chi_{3025}(86,\cdot)\)
\(\chi_{3025}(246,\cdot)\)
\(\chi_{3025}(256,\cdot)\)
\(\chi_{3025}(291,\cdot)\)
\(\chi_{3025}(361,\cdot)\)
\(\chi_{3025}(521,\cdot)\)
\(\chi_{3025}(531,\cdot)\)
\(\chi_{3025}(566,\cdot)\)
\(\chi_{3025}(636,\cdot)\)
\(\chi_{3025}(796,\cdot)\)
\(\chi_{3025}(806,\cdot)\)
\(\chi_{3025}(841,\cdot)\)
\(\chi_{3025}(911,\cdot)\)
\(\chi_{3025}(1071,\cdot)\)
\(\chi_{3025}(1081,\cdot)\)
\(\chi_{3025}(1186,\cdot)\)
\(\chi_{3025}(1346,\cdot)\)
\(\chi_{3025}(1356,\cdot)\)
\(\chi_{3025}(1391,\cdot)\)
\(\chi_{3025}(1621,\cdot)\)
\(\chi_{3025}(1631,\cdot)\)
\(\chi_{3025}(1666,\cdot)\)
\(\chi_{3025}(1736,\cdot)\)
\(\chi_{3025}(1906,\cdot)\)
\(\chi_{3025}(1941,\cdot)\)
\(\chi_{3025}(2011,\cdot)\)
\(\chi_{3025}(2171,\cdot)\)
\(\chi_{3025}(2216,\cdot)\)
\(\chi_{3025}(2286,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,2301)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{7}{55}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 3025 }(291, a) \) |
\(1\) | \(1\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) |
sage:chi.jacobi_sum(n)