Properties

Label 9075.dx
Modulus $9075$
Conductor $3025$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,22,4])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(16,9075)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9075\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(55\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 3025.ca
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(13\) \(14\) \(16\) \(17\) \(19\) \(23\)
\(\chi_{9075}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{41}{55}\right)\)
\(\chi_{9075}(256,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{27}{55}\right)\)
\(\chi_{9075}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{24}{55}\right)\)
\(\chi_{9075}(796,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{43}{55}\right)\)
\(\chi_{9075}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{46}{55}\right)\)
\(\chi_{9075}(1081,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{17}{55}\right)\)
\(\chi_{9075}(1186,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{39}{55}\right)\)
\(\chi_{9075}(1621,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{8}{55}\right)\)
\(\chi_{9075}(1666,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{51}{55}\right)\)
\(\chi_{9075}(1906,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{7}{55}\right)\)
\(\chi_{9075}(2011,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{54}{55}\right)\)
\(\chi_{9075}(2446,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{28}{55}\right)\)
\(\chi_{9075}(2491,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{1}{55}\right)\)
\(\chi_{9075}(2731,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{52}{55}\right)\)
\(\chi_{9075}(2836,\cdot)\) \(1\) \(1\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{14}{55}\right)\)
\(\chi_{9075}(3271,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{48}{55}\right)\)
\(\chi_{9075}(3316,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{6}{55}\right)\)
\(\chi_{9075}(3556,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{42}{55}\right)\)
\(\chi_{9075}(3661,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{29}{55}\right)\)
\(\chi_{9075}(4096,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{13}{55}\right)\)
\(\chi_{9075}(4381,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{32}{55}\right)\)
\(\chi_{9075}(4966,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{16}{55}\right)\)
\(\chi_{9075}(5311,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{4}{55}\right)\)
\(\chi_{9075}(5746,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{53}{55}\right)\)
\(\chi_{9075}(5791,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{21}{55}\right)\)
\(\chi_{9075}(6031,\cdot)\) \(1\) \(1\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{12}{55}\right)\)
\(\chi_{9075}(6136,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{19}{55}\right)\)
\(\chi_{9075}(6571,\cdot)\) \(1\) \(1\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{18}{55}\right)\)
\(\chi_{9075}(6616,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{26}{55}\right)\)
\(\chi_{9075}(6856,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{2}{55}\right)\)
\(\chi_{9075}(6961,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{34}{55}\right)\)