Properties

Label 8732.bt
Modulus $8732$
Conductor $8732$
Order $116$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(116)) M = H._module chi = DirichletCharacter(H, M([58,29,100])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(475,8732)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8732\)
Conductor: \(8732\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(116\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{116})$
Fixed field: Number field defined by a degree 116 polynomial (not computed)

First 31 of 56 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{8732}(475,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{107}{116}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{63}{116}\right)\) \(e\left(\frac{3}{116}\right)\) \(e\left(\frac{27}{116}\right)\) \(e\left(\frac{1}{116}\right)\) \(e\left(\frac{7}{58}\right)\)
\(\chi_{8732}(487,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{5}{116}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{81}{116}\right)\) \(e\left(\frac{37}{116}\right)\) \(e\left(\frac{101}{116}\right)\) \(e\left(\frac{51}{116}\right)\) \(e\left(\frac{9}{58}\right)\)
\(\chi_{8732}(635,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{25}{116}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{57}{116}\right)\) \(e\left(\frac{69}{116}\right)\) \(e\left(\frac{41}{116}\right)\) \(e\left(\frac{23}{116}\right)\) \(e\left(\frac{45}{58}\right)\)
\(\chi_{8732}(771,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{111}{116}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{35}{116}\right)\) \(e\left(\frac{79}{116}\right)\) \(e\left(\frac{15}{116}\right)\) \(e\left(\frac{65}{116}\right)\) \(e\left(\frac{49}{58}\right)\)
\(\chi_{8732}(783,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{77}{116}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{41}{116}\right)\) \(e\left(\frac{13}{116}\right)\) \(e\left(\frac{1}{116}\right)\) \(e\left(\frac{43}{116}\right)\) \(e\left(\frac{11}{58}\right)\)
\(\chi_{8732}(931,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{105}{116}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{77}{116}\right)\) \(e\left(\frac{81}{116}\right)\) \(e\left(\frac{33}{116}\right)\) \(e\left(\frac{27}{116}\right)\) \(e\left(\frac{15}{58}\right)\)
\(\chi_{8732}(1067,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{43}{116}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{47}{116}\right)\) \(e\left(\frac{63}{116}\right)\) \(e\left(\frac{103}{116}\right)\) \(e\left(\frac{21}{116}\right)\) \(e\left(\frac{31}{58}\right)\)
\(\chi_{8732}(1079,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{45}{116}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{33}{116}\right)\) \(e\left(\frac{101}{116}\right)\) \(e\left(\frac{97}{116}\right)\) \(e\left(\frac{111}{116}\right)\) \(e\left(\frac{23}{58}\right)\)
\(\chi_{8732}(1215,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{27}{116}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{43}{116}\right)\) \(e\left(\frac{107}{116}\right)\) \(e\left(\frac{35}{116}\right)\) \(e\left(\frac{113}{116}\right)\) \(e\left(\frac{37}{58}\right)\)
\(\chi_{8732}(1511,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{35}{116}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{103}{116}\right)\) \(e\left(\frac{27}{116}\right)\) \(e\left(\frac{11}{116}\right)\) \(e\left(\frac{9}{116}\right)\) \(e\left(\frac{5}{58}\right)\)
\(\chi_{8732}(1523,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{97}{116}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{17}{116}\right)\) \(e\left(\frac{45}{116}\right)\) \(e\left(\frac{57}{116}\right)\) \(e\left(\frac{15}{116}\right)\) \(e\left(\frac{47}{58}\right)\)
\(\chi_{8732}(1659,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{71}{116}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{83}{116}\right)\) \(e\left(\frac{15}{116}\right)\) \(e\left(\frac{19}{116}\right)\) \(e\left(\frac{5}{116}\right)\) \(e\left(\frac{35}{58}\right)\)
\(\chi_{8732}(1671,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{21}{116}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{85}{116}\right)\) \(e\left(\frac{109}{116}\right)\) \(e\left(\frac{53}{116}\right)\) \(e\left(\frac{75}{116}\right)\) \(e\left(\frac{3}{58}\right)\)
\(\chi_{8732}(1819,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{113}{116}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{21}{116}\right)\) \(e\left(\frac{1}{116}\right)\) \(e\left(\frac{9}{116}\right)\) \(e\left(\frac{39}{116}\right)\) \(e\left(\frac{41}{58}\right)\)
\(\chi_{8732}(1967,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{9}{116}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{53}{116}\right)\) \(e\left(\frac{113}{116}\right)\) \(e\left(\frac{89}{116}\right)\) \(e\left(\frac{115}{116}\right)\) \(e\left(\frac{51}{58}\right)\)
\(\chi_{8732}(2251,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{11}{116}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{39}{116}\right)\) \(e\left(\frac{35}{116}\right)\) \(e\left(\frac{83}{116}\right)\) \(e\left(\frac{89}{116}\right)\) \(e\left(\frac{43}{58}\right)\)
\(\chi_{8732}(2263,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{33}{116}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{1}{116}\right)\) \(e\left(\frac{105}{116}\right)\) \(e\left(\frac{17}{116}\right)\) \(e\left(\frac{35}{116}\right)\) \(e\left(\frac{13}{58}\right)\)
\(\chi_{8732}(2411,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{65}{116}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{9}{116}\right)\) \(e\left(\frac{17}{116}\right)\) \(e\left(\frac{37}{116}\right)\) \(e\left(\frac{83}{116}\right)\) \(e\left(\frac{1}{58}\right)\)
\(\chi_{8732}(2559,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{109}{116}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{49}{116}\right)\) \(e\left(\frac{41}{116}\right)\) \(e\left(\frac{21}{116}\right)\) \(e\left(\frac{91}{116}\right)\) \(e\left(\frac{57}{58}\right)\)
\(\chi_{8732}(2991,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{23}{116}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{71}{116}\right)\) \(e\left(\frac{31}{116}\right)\) \(e\left(\frac{47}{116}\right)\) \(e\left(\frac{49}{116}\right)\) \(e\left(\frac{53}{58}\right)\)
\(\chi_{8732}(3003,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{61}{116}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{37}{116}\right)\) \(e\left(\frac{57}{116}\right)\) \(e\left(\frac{49}{116}\right)\) \(e\left(\frac{19}{116}\right)\) \(e\left(\frac{17}{58}\right)\)
\(\chi_{8732}(3139,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{15}{116}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{11}{116}\right)\) \(e\left(\frac{111}{116}\right)\) \(e\left(\frac{71}{116}\right)\) \(e\left(\frac{37}{116}\right)\) \(e\left(\frac{27}{58}\right)\)
\(\chi_{8732}(3447,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{57}{116}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{65}{116}\right)\) \(e\left(\frac{97}{116}\right)\) \(e\left(\frac{61}{116}\right)\) \(e\left(\frac{71}{116}\right)\) \(e\left(\frac{33}{58}\right)\)
\(\chi_{8732}(3743,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{1}{116}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{109}{116}\right)\) \(e\left(\frac{77}{116}\right)\) \(e\left(\frac{113}{116}\right)\) \(e\left(\frac{103}{116}\right)\) \(e\left(\frac{25}{58}\right)\)
\(\chi_{8732}(4027,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{63}{116}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{23}{116}\right)\) \(e\left(\frac{95}{116}\right)\) \(e\left(\frac{43}{116}\right)\) \(e\left(\frac{109}{116}\right)\) \(e\left(\frac{9}{58}\right)\)
\(\chi_{8732}(4039,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{89}{116}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{73}{116}\right)\) \(e\left(\frac{9}{116}\right)\) \(e\left(\frac{81}{116}\right)\) \(e\left(\frac{3}{116}\right)\) \(e\left(\frac{21}{58}\right)\)
\(\chi_{8732}(4175,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{83}{116}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{115}{116}\right)\) \(e\left(\frac{11}{116}\right)\) \(e\left(\frac{99}{116}\right)\) \(e\left(\frac{81}{116}\right)\) \(e\left(\frac{45}{58}\right)\)
\(\chi_{8732}(4187,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{41}{116}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{61}{116}\right)\) \(e\left(\frac{25}{116}\right)\) \(e\left(\frac{109}{116}\right)\) \(e\left(\frac{47}{116}\right)\) \(e\left(\frac{39}{58}\right)\)
\(\chi_{8732}(4323,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{19}{116}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{99}{116}\right)\) \(e\left(\frac{71}{116}\right)\) \(e\left(\frac{59}{116}\right)\) \(e\left(\frac{101}{116}\right)\) \(e\left(\frac{11}{58}\right)\)
\(\chi_{8732}(4335,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{37}{116}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{89}{116}\right)\) \(e\left(\frac{65}{116}\right)\) \(e\left(\frac{5}{116}\right)\) \(e\left(\frac{99}{116}\right)\) \(e\left(\frac{55}{58}\right)\)
\(\chi_{8732}(4471,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{47}{116}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{19}{116}\right)\) \(e\left(\frac{23}{116}\right)\) \(e\left(\frac{91}{116}\right)\) \(e\left(\frac{85}{116}\right)\) \(e\left(\frac{15}{58}\right)\)