sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8732, base_ring=CyclotomicField(116))
M = H._module
chi = DirichletCharacter(H, M([58,87,52]))
pari:[g,chi] = znchar(Mod(2559,8732))
Modulus: | \(8732\) | |
Conductor: | \(8732\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(116\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8732}(475,\cdot)\)
\(\chi_{8732}(487,\cdot)\)
\(\chi_{8732}(635,\cdot)\)
\(\chi_{8732}(771,\cdot)\)
\(\chi_{8732}(783,\cdot)\)
\(\chi_{8732}(931,\cdot)\)
\(\chi_{8732}(1067,\cdot)\)
\(\chi_{8732}(1079,\cdot)\)
\(\chi_{8732}(1215,\cdot)\)
\(\chi_{8732}(1511,\cdot)\)
\(\chi_{8732}(1523,\cdot)\)
\(\chi_{8732}(1659,\cdot)\)
\(\chi_{8732}(1671,\cdot)\)
\(\chi_{8732}(1819,\cdot)\)
\(\chi_{8732}(1967,\cdot)\)
\(\chi_{8732}(2251,\cdot)\)
\(\chi_{8732}(2263,\cdot)\)
\(\chi_{8732}(2411,\cdot)\)
\(\chi_{8732}(2559,\cdot)\)
\(\chi_{8732}(2991,\cdot)\)
\(\chi_{8732}(3003,\cdot)\)
\(\chi_{8732}(3139,\cdot)\)
\(\chi_{8732}(3447,\cdot)\)
\(\chi_{8732}(3743,\cdot)\)
\(\chi_{8732}(4027,\cdot)\)
\(\chi_{8732}(4039,\cdot)\)
\(\chi_{8732}(4175,\cdot)\)
\(\chi_{8732}(4187,\cdot)\)
\(\chi_{8732}(4323,\cdot)\)
\(\chi_{8732}(4335,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4367,1889,297)\) → \((-1,-i,e\left(\frac{13}{29}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8732 }(2559, a) \) |
\(1\) | \(1\) | \(e\left(\frac{12}{29}\right)\) | \(e\left(\frac{109}{116}\right)\) | \(e\left(\frac{33}{58}\right)\) | \(e\left(\frac{24}{29}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(e\left(\frac{49}{116}\right)\) | \(e\left(\frac{41}{116}\right)\) | \(e\left(\frac{21}{116}\right)\) | \(e\left(\frac{91}{116}\right)\) | \(e\left(\frac{57}{58}\right)\) |
sage:chi.jacobi_sum(n)