Properties

Label 8732.3447
Modulus $8732$
Conductor $8732$
Order $116$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(116)) M = H._module chi = DirichletCharacter(H, M([58,87,24]))
 
Copy content pari:[g,chi] = znchar(Mod(3447,8732))
 

Basic properties

Modulus: \(8732\)
Conductor: \(8732\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(116\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8732.bt

\(\chi_{8732}(475,\cdot)\) \(\chi_{8732}(487,\cdot)\) \(\chi_{8732}(635,\cdot)\) \(\chi_{8732}(771,\cdot)\) \(\chi_{8732}(783,\cdot)\) \(\chi_{8732}(931,\cdot)\) \(\chi_{8732}(1067,\cdot)\) \(\chi_{8732}(1079,\cdot)\) \(\chi_{8732}(1215,\cdot)\) \(\chi_{8732}(1511,\cdot)\) \(\chi_{8732}(1523,\cdot)\) \(\chi_{8732}(1659,\cdot)\) \(\chi_{8732}(1671,\cdot)\) \(\chi_{8732}(1819,\cdot)\) \(\chi_{8732}(1967,\cdot)\) \(\chi_{8732}(2251,\cdot)\) \(\chi_{8732}(2263,\cdot)\) \(\chi_{8732}(2411,\cdot)\) \(\chi_{8732}(2559,\cdot)\) \(\chi_{8732}(2991,\cdot)\) \(\chi_{8732}(3003,\cdot)\) \(\chi_{8732}(3139,\cdot)\) \(\chi_{8732}(3447,\cdot)\) \(\chi_{8732}(3743,\cdot)\) \(\chi_{8732}(4027,\cdot)\) \(\chi_{8732}(4039,\cdot)\) \(\chi_{8732}(4175,\cdot)\) \(\chi_{8732}(4187,\cdot)\) \(\chi_{8732}(4323,\cdot)\) \(\chi_{8732}(4335,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{116})$
Fixed field: Number field defined by a degree 116 polynomial (not computed)

Values on generators

\((4367,1889,297)\) → \((-1,-i,e\left(\frac{6}{29}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8732 }(3447, a) \) \(1\)\(1\)\(e\left(\frac{10}{29}\right)\)\(e\left(\frac{57}{116}\right)\)\(e\left(\frac{13}{58}\right)\)\(e\left(\frac{20}{29}\right)\)\(e\left(\frac{5}{29}\right)\)\(e\left(\frac{65}{116}\right)\)\(e\left(\frac{97}{116}\right)\)\(e\left(\frac{61}{116}\right)\)\(e\left(\frac{71}{116}\right)\)\(e\left(\frac{33}{58}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8732 }(3447,a) \;\) at \(\;a = \) e.g. 2