Properties

Label 8732.2145
Modulus $8732$
Conductor $2183$
Order $58$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(58)) M = H._module chi = DirichletCharacter(H, M([0,29,10]))
 
Copy content pari:[g,chi] = znchar(Mod(2145,8732))
 

Basic properties

Modulus: \(8732\)
Conductor: \(2183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(58\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2183}(2145,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8732.bm

\(\chi_{8732}(369,\cdot)\) \(\chi_{8732}(517,\cdot)\) \(\chi_{8732}(665,\cdot)\) \(\chi_{8732}(813,\cdot)\) \(\chi_{8732}(961,\cdot)\) \(\chi_{8732}(1405,\cdot)\) \(\chi_{8732}(1553,\cdot)\) \(\chi_{8732}(1701,\cdot)\) \(\chi_{8732}(1849,\cdot)\) \(\chi_{8732}(2145,\cdot)\) \(\chi_{8732}(2293,\cdot)\) \(\chi_{8732}(2441,\cdot)\) \(\chi_{8732}(2885,\cdot)\) \(\chi_{8732}(3329,\cdot)\) \(\chi_{8732}(3625,\cdot)\) \(\chi_{8732}(3921,\cdot)\) \(\chi_{8732}(4069,\cdot)\) \(\chi_{8732}(4217,\cdot)\) \(\chi_{8732}(4513,\cdot)\) \(\chi_{8732}(5549,\cdot)\) \(\chi_{8732}(5845,\cdot)\) \(\chi_{8732}(6141,\cdot)\) \(\chi_{8732}(6289,\cdot)\) \(\chi_{8732}(6585,\cdot)\) \(\chi_{8732}(6733,\cdot)\) \(\chi_{8732}(7325,\cdot)\) \(\chi_{8732}(8065,\cdot)\) \(\chi_{8732}(8213,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{29})$
Fixed field: Number field defined by a degree 58 polynomial

Values on generators

\((4367,1889,297)\) → \((1,-1,e\left(\frac{5}{29}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8732 }(2145, a) \) \(1\)\(1\)\(e\left(\frac{18}{29}\right)\)\(e\left(\frac{31}{58}\right)\)\(e\left(\frac{3}{29}\right)\)\(e\left(\frac{7}{29}\right)\)\(e\left(\frac{9}{29}\right)\)\(e\left(\frac{15}{58}\right)\)\(e\left(\frac{9}{58}\right)\)\(e\left(\frac{23}{58}\right)\)\(e\left(\frac{3}{58}\right)\)\(e\left(\frac{21}{29}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8732 }(2145,a) \;\) at \(\;a = \) e.g. 2