Properties

Label 8732.bm
Modulus $8732$
Conductor $2183$
Order $58$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(58)) M = H._module chi = DirichletCharacter(H, M([0,29,56])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(369,8732)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8732\)
Conductor: \(2183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(58\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2183.v
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{29})$
Fixed field: Number field defined by a degree 58 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{8732}(369,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{19}{29}\right)\)
\(\chi_{8732}(517,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{8}{29}\right)\)
\(\chi_{8732}(665,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{20}{29}\right)\)
\(\chi_{8732}(813,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{22}{29}\right)\)
\(\chi_{8732}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{26}{29}\right)\)
\(\chi_{8732}(1405,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{9}{29}\right)\)
\(\chi_{8732}(1553,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{16}{29}\right)\)
\(\chi_{8732}(1701,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{6}{29}\right)\)
\(\chi_{8732}(1849,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{11}{29}\right)\)
\(\chi_{8732}(2145,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{21}{29}\right)\)
\(\chi_{8732}(2293,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{15}{29}\right)\)
\(\chi_{8732}(2441,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{14}{29}\right)\)
\(\chi_{8732}(2885,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{23}{29}\right)\)
\(\chi_{8732}(3329,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{2}{29}\right)\)
\(\chi_{8732}(3625,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{27}{29}\right)\)
\(\chi_{8732}(3921,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{25}{29}\right)\)
\(\chi_{8732}(4069,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{5}{29}\right)\)
\(\chi_{8732}(4217,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{13}{29}\right)\)
\(\chi_{8732}(4513,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{24}{29}\right)\)
\(\chi_{8732}(5549,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{18}{29}\right)\)
\(\chi_{8732}(5845,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{10}{29}\right)\)
\(\chi_{8732}(6141,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{1}{29}\right)\)
\(\chi_{8732}(6289,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{4}{29}\right)\)
\(\chi_{8732}(6585,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{17}{29}\right)\)
\(\chi_{8732}(6733,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{3}{29}\right)\)
\(\chi_{8732}(7325,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{7}{29}\right)\)
\(\chi_{8732}(8065,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{12}{29}\right)\)
\(\chi_{8732}(8213,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{28}{29}\right)\)