sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(58))
M = H._module
chi = DirichletCharacter(H, M([29,10]))
pari:[g,chi] = znchar(Mod(2145,2183))
Modulus: | \(2183\) | |
Conductor: | \(2183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(58\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2183}(36,\cdot)\)
\(\chi_{2183}(110,\cdot)\)
\(\chi_{2183}(147,\cdot)\)
\(\chi_{2183}(184,\cdot)\)
\(\chi_{2183}(258,\cdot)\)
\(\chi_{2183}(369,\cdot)\)
\(\chi_{2183}(517,\cdot)\)
\(\chi_{2183}(665,\cdot)\)
\(\chi_{2183}(702,\cdot)\)
\(\chi_{2183}(776,\cdot)\)
\(\chi_{2183}(813,\cdot)\)
\(\chi_{2183}(961,\cdot)\)
\(\chi_{2183}(1146,\cdot)\)
\(\chi_{2183}(1183,\cdot)\)
\(\chi_{2183}(1405,\cdot)\)
\(\chi_{2183}(1442,\cdot)\)
\(\chi_{2183}(1479,\cdot)\)
\(\chi_{2183}(1516,\cdot)\)
\(\chi_{2183}(1553,\cdot)\)
\(\chi_{2183}(1664,\cdot)\)
\(\chi_{2183}(1701,\cdot)\)
\(\chi_{2183}(1738,\cdot)\)
\(\chi_{2183}(1775,\cdot)\)
\(\chi_{2183}(1849,\cdot)\)
\(\chi_{2183}(1886,\cdot)\)
\(\chi_{2183}(1923,\cdot)\)
\(\chi_{2183}(2034,\cdot)\)
\(\chi_{2183}(2145,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1889,297)\) → \((-1,e\left(\frac{5}{29}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 2183 }(2145, a) \) |
\(1\) | \(1\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{18}{29}\right)\) | \(e\left(\frac{10}{29}\right)\) | \(e\left(\frac{31}{58}\right)\) | \(e\left(\frac{17}{58}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{1}{58}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(e\left(\frac{9}{29}\right)\) |
sage:chi.jacobi_sum(n)