| L(s) = 1 | + (−0.468 − 0.883i)2-s + (−0.725 − 0.687i)3-s + (−0.561 + 0.827i)4-s + (−0.976 − 0.214i)5-s + (−0.267 + 0.963i)6-s + (0.796 + 0.605i)7-s + (0.994 + 0.108i)8-s + (0.0541 + 0.998i)9-s + (0.267 + 0.963i)10-s + (−0.370 + 0.928i)11-s + (0.976 − 0.214i)12-s + (−0.0541 + 0.998i)13-s + (0.161 − 0.986i)14-s + (0.561 + 0.827i)15-s + (−0.370 − 0.928i)16-s + (−0.796 + 0.605i)17-s + ⋯ |
| L(s) = 1 | + (−0.468 − 0.883i)2-s + (−0.725 − 0.687i)3-s + (−0.561 + 0.827i)4-s + (−0.976 − 0.214i)5-s + (−0.267 + 0.963i)6-s + (0.796 + 0.605i)7-s + (0.994 + 0.108i)8-s + (0.0541 + 0.998i)9-s + (0.267 + 0.963i)10-s + (−0.370 + 0.928i)11-s + (0.976 − 0.214i)12-s + (−0.0541 + 0.998i)13-s + (0.161 − 0.986i)14-s + (0.561 + 0.827i)15-s + (−0.370 − 0.928i)16-s + (−0.796 + 0.605i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.513 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.513 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5545861194 + 0.3142644635i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5545861194 + 0.3142644635i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5728801502 - 0.1079842638i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5728801502 - 0.1079842638i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 37 | \( 1 \) |
| 59 | \( 1 \) |
| good | 2 | \( 1 + (-0.468 - 0.883i)T \) |
| 3 | \( 1 + (-0.725 - 0.687i)T \) |
| 5 | \( 1 + (-0.976 - 0.214i)T \) |
| 7 | \( 1 + (0.796 + 0.605i)T \) |
| 11 | \( 1 + (-0.370 + 0.928i)T \) |
| 13 | \( 1 + (-0.0541 + 0.998i)T \) |
| 17 | \( 1 + (-0.796 + 0.605i)T \) |
| 19 | \( 1 + (0.947 + 0.319i)T \) |
| 23 | \( 1 + (0.856 + 0.515i)T \) |
| 29 | \( 1 + (-0.468 + 0.883i)T \) |
| 31 | \( 1 + (0.947 - 0.319i)T \) |
| 41 | \( 1 + (-0.856 + 0.515i)T \) |
| 43 | \( 1 + (0.370 + 0.928i)T \) |
| 47 | \( 1 + (0.976 - 0.214i)T \) |
| 53 | \( 1 + (0.267 - 0.963i)T \) |
| 61 | \( 1 + (-0.468 - 0.883i)T \) |
| 67 | \( 1 + (-0.994 - 0.108i)T \) |
| 71 | \( 1 + (0.976 - 0.214i)T \) |
| 73 | \( 1 + (-0.161 + 0.986i)T \) |
| 79 | \( 1 + (0.725 - 0.687i)T \) |
| 83 | \( 1 + (0.647 + 0.762i)T \) |
| 89 | \( 1 + (-0.468 + 0.883i)T \) |
| 97 | \( 1 + (0.161 + 0.986i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.57424212356115934877262618760, −18.58518139705558902176016336217, −18.117953501765960570960688136871, −17.27486353259215671137680351054, −16.808566268642108874181785823473, −15.898554596664392518638217084728, −15.49785863456948739584598927904, −14.97999990515052432248937574611, −13.98144392577179556705779291957, −13.355615451537290898503983437271, −12.068533964698277588154962479170, −11.29535755174911915788994315364, −10.713206731548233309578172325090, −10.27178734285923294630850054620, −9.069797767835089395935966127075, −8.47277164566787435033082409409, −7.57700285905781921139185761142, −7.08677830961965890509073736477, −6.070737335697716070223754774877, −5.21481587298982038905496241742, −4.68534103705568700746086403086, −3.87730825151838056309193251052, −2.861152321662559739637192825632, −0.93125579567349387772230814047, −0.41439485111626520763038626917,
1.13120815629154647678418362722, 1.78724372070214652866260767192, 2.63357849185557582300239235109, 3.85855978878457331631239921311, 4.77844100824602164028535672748, 5.12786798142903176360639926109, 6.607315164403507913328856660390, 7.42006353825592213548844084319, 7.94175337022029856841675775492, 8.7307997281371669744008106743, 9.52130455519138621837540177685, 10.6408995547721795259442521599, 11.277224750418316901468667081432, 11.76202717303873444603233967868, 12.31106821087111928926561217438, 12.95953478183179292112349798249, 13.78741807449679531853861259762, 14.8392812134160925591408035520, 15.67579261247967876228937237332, 16.525073118686801890565447065127, 17.21411239192526951647545495491, 17.90675698213148912292866106594, 18.48281086501411015802057263421, 19.062197099390542284959024515137, 19.750178782491595242888038596046