Properties

Label 8664.1907
Modulus $8664$
Conductor $8664$
Order $114$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8664, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,57,57,8]))
 
Copy content pari:[g,chi] = znchar(Mod(1907,8664))
 

Basic properties

Modulus: \(8664\)
Conductor: \(8664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8664.cy

\(\chi_{8664}(11,\cdot)\) \(\chi_{8664}(83,\cdot)\) \(\chi_{8664}(467,\cdot)\) \(\chi_{8664}(539,\cdot)\) \(\chi_{8664}(923,\cdot)\) \(\chi_{8664}(995,\cdot)\) \(\chi_{8664}(1379,\cdot)\) \(\chi_{8664}(1451,\cdot)\) \(\chi_{8664}(1835,\cdot)\) \(\chi_{8664}(1907,\cdot)\) \(\chi_{8664}(2291,\cdot)\) \(\chi_{8664}(2363,\cdot)\) \(\chi_{8664}(2747,\cdot)\) \(\chi_{8664}(3203,\cdot)\) \(\chi_{8664}(3275,\cdot)\) \(\chi_{8664}(3659,\cdot)\) \(\chi_{8664}(3731,\cdot)\) \(\chi_{8664}(4115,\cdot)\) \(\chi_{8664}(4187,\cdot)\) \(\chi_{8664}(4571,\cdot)\) \(\chi_{8664}(4643,\cdot)\) \(\chi_{8664}(5027,\cdot)\) \(\chi_{8664}(5099,\cdot)\) \(\chi_{8664}(5555,\cdot)\) \(\chi_{8664}(5939,\cdot)\) \(\chi_{8664}(6011,\cdot)\) \(\chi_{8664}(6395,\cdot)\) \(\chi_{8664}(6467,\cdot)\) \(\chi_{8664}(6851,\cdot)\) \(\chi_{8664}(6923,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((2167,4333,5777,8305)\) → \((-1,-1,-1,e\left(\frac{4}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8664 }(1907, a) \) \(1\)\(1\)\(e\left(\frac{16}{57}\right)\)\(e\left(\frac{1}{38}\right)\)\(e\left(\frac{25}{38}\right)\)\(e\left(\frac{67}{114}\right)\)\(e\left(\frac{41}{114}\right)\)\(e\left(\frac{14}{57}\right)\)\(e\left(\frac{32}{57}\right)\)\(e\left(\frac{11}{57}\right)\)\(e\left(\frac{29}{38}\right)\)\(e\left(\frac{35}{114}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8664 }(1907,a) \;\) at \(\;a = \) e.g. 2