sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8664, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([57,57,57,50]))
pari:[g,chi] = znchar(Mod(1451,8664))
| Modulus: | \(8664\) | |
| Conductor: | \(8664\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8664}(11,\cdot)\)
\(\chi_{8664}(83,\cdot)\)
\(\chi_{8664}(467,\cdot)\)
\(\chi_{8664}(539,\cdot)\)
\(\chi_{8664}(923,\cdot)\)
\(\chi_{8664}(995,\cdot)\)
\(\chi_{8664}(1379,\cdot)\)
\(\chi_{8664}(1451,\cdot)\)
\(\chi_{8664}(1835,\cdot)\)
\(\chi_{8664}(1907,\cdot)\)
\(\chi_{8664}(2291,\cdot)\)
\(\chi_{8664}(2363,\cdot)\)
\(\chi_{8664}(2747,\cdot)\)
\(\chi_{8664}(3203,\cdot)\)
\(\chi_{8664}(3275,\cdot)\)
\(\chi_{8664}(3659,\cdot)\)
\(\chi_{8664}(3731,\cdot)\)
\(\chi_{8664}(4115,\cdot)\)
\(\chi_{8664}(4187,\cdot)\)
\(\chi_{8664}(4571,\cdot)\)
\(\chi_{8664}(4643,\cdot)\)
\(\chi_{8664}(5027,\cdot)\)
\(\chi_{8664}(5099,\cdot)\)
\(\chi_{8664}(5555,\cdot)\)
\(\chi_{8664}(5939,\cdot)\)
\(\chi_{8664}(6011,\cdot)\)
\(\chi_{8664}(6395,\cdot)\)
\(\chi_{8664}(6467,\cdot)\)
\(\chi_{8664}(6851,\cdot)\)
\(\chi_{8664}(6923,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2167,4333,5777,8305)\) → \((-1,-1,-1,e\left(\frac{25}{57}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 8664 }(1451, a) \) |
\(1\) | \(1\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{11}{38}\right)\) | \(e\left(\frac{9}{38}\right)\) | \(e\left(\frac{91}{114}\right)\) | \(e\left(\frac{71}{114}\right)\) | \(e\left(\frac{2}{57}\right)\) | \(e\left(\frac{29}{57}\right)\) | \(e\left(\frac{26}{57}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{5}{114}\right)\) |
sage:chi.jacobi_sum(n)