Properties

Label 8664.cy
Modulus $8664$
Conductor $8664$
Order $114$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8664, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,57,57,34])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(11,8664)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8664\)
Conductor: \(8664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{8664}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{49}{114}\right)\)
\(\chi_{8664}(83,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{29}{114}\right)\)
\(\chi_{8664}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{37}{114}\right)\)
\(\chi_{8664}(539,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{59}{114}\right)\)
\(\chi_{8664}(923,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{25}{114}\right)\)
\(\chi_{8664}(995,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{89}{114}\right)\)
\(\chi_{8664}(1379,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{13}{114}\right)\)
\(\chi_{8664}(1451,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{5}{114}\right)\)
\(\chi_{8664}(1835,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{1}{114}\right)\)
\(\chi_{8664}(1907,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{35}{114}\right)\)
\(\chi_{8664}(2291,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{103}{114}\right)\)
\(\chi_{8664}(2363,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{65}{114}\right)\)
\(\chi_{8664}(2747,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{91}{114}\right)\)
\(\chi_{8664}(3203,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{79}{114}\right)\)
\(\chi_{8664}(3275,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{11}{114}\right)\)
\(\chi_{8664}(3659,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{67}{114}\right)\)
\(\chi_{8664}(3731,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{41}{114}\right)\)
\(\chi_{8664}(4115,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{55}{114}\right)\)
\(\chi_{8664}(4187,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{71}{114}\right)\)
\(\chi_{8664}(4571,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{43}{114}\right)\)
\(\chi_{8664}(4643,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{101}{114}\right)\)
\(\chi_{8664}(5027,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{31}{114}\right)\)
\(\chi_{8664}(5099,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{17}{114}\right)\)
\(\chi_{8664}(5555,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{47}{114}\right)\)
\(\chi_{8664}(5939,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{7}{114}\right)\)
\(\chi_{8664}(6011,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{77}{114}\right)\)
\(\chi_{8664}(6395,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{109}{114}\right)\)
\(\chi_{8664}(6467,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{107}{114}\right)\)
\(\chi_{8664}(6851,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{97}{114}\right)\)
\(\chi_{8664}(6923,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{23}{114}\right)\)
\(\chi_{8664}(7307,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{85}{114}\right)\)