sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(841, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([13]))
pari:[g,chi] = znchar(Mod(196,841))
\(\chi_{841}(63,\cdot)\)
\(\chi_{841}(196,\cdot)\)
\(\chi_{841}(236,\cdot)\)
\(\chi_{841}(267,\cdot)\)
\(\chi_{841}(270,\cdot)\)
\(\chi_{841}(651,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{13}{14}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 841 }(196, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)