sage: H = DirichletGroup(841)
pari: g = idealstar(,841,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 812 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{812}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{841}(2,\cdot)$ |
First 32 of 812 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{841}(1,\cdot)\) | 841.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{841}(2,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{812}\right)\) | \(e\left(\frac{537}{812}\right)\) | \(e\left(\frac{1}{406}\right)\) | \(e\left(\frac{151}{406}\right)\) | \(e\left(\frac{269}{406}\right)\) | \(e\left(\frac{94}{203}\right)\) | \(e\left(\frac{3}{812}\right)\) | \(e\left(\frac{131}{406}\right)\) | \(e\left(\frac{303}{812}\right)\) | \(e\left(\frac{81}{812}\right)\) |
\(\chi_{841}(3,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{537}{812}\right)\) | \(e\left(\frac{109}{812}\right)\) | \(e\left(\frac{131}{406}\right)\) | \(e\left(\frac{293}{406}\right)\) | \(e\left(\frac{323}{406}\right)\) | \(e\left(\frac{134}{203}\right)\) | \(e\left(\frac{799}{812}\right)\) | \(e\left(\frac{109}{406}\right)\) | \(e\left(\frac{311}{812}\right)\) | \(e\left(\frac{461}{812}\right)\) |
\(\chi_{841}(4,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{406}\right)\) | \(e\left(\frac{131}{406}\right)\) | \(e\left(\frac{1}{203}\right)\) | \(e\left(\frac{151}{203}\right)\) | \(e\left(\frac{66}{203}\right)\) | \(e\left(\frac{188}{203}\right)\) | \(e\left(\frac{3}{406}\right)\) | \(e\left(\frac{131}{203}\right)\) | \(e\left(\frac{303}{406}\right)\) | \(e\left(\frac{81}{406}\right)\) |
\(\chi_{841}(5,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{151}{406}\right)\) | \(e\left(\frac{293}{406}\right)\) | \(e\left(\frac{151}{203}\right)\) | \(e\left(\frac{65}{203}\right)\) | \(e\left(\frac{19}{203}\right)\) | \(e\left(\frac{171}{203}\right)\) | \(e\left(\frac{47}{406}\right)\) | \(e\left(\frac{90}{203}\right)\) | \(e\left(\frac{281}{406}\right)\) | \(e\left(\frac{51}{406}\right)\) |
\(\chi_{841}(6,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{269}{406}\right)\) | \(e\left(\frac{323}{406}\right)\) | \(e\left(\frac{66}{203}\right)\) | \(e\left(\frac{19}{203}\right)\) | \(e\left(\frac{93}{203}\right)\) | \(e\left(\frac{25}{203}\right)\) | \(e\left(\frac{401}{406}\right)\) | \(e\left(\frac{120}{203}\right)\) | \(e\left(\frac{307}{406}\right)\) | \(e\left(\frac{271}{406}\right)\) |
\(\chi_{841}(7,\cdot)\) | 841.j | 203 | yes | \(1\) | \(1\) | \(e\left(\frac{94}{203}\right)\) | \(e\left(\frac{134}{203}\right)\) | \(e\left(\frac{188}{203}\right)\) | \(e\left(\frac{171}{203}\right)\) | \(e\left(\frac{25}{203}\right)\) | \(e\left(\frac{22}{203}\right)\) | \(e\left(\frac{79}{203}\right)\) | \(e\left(\frac{65}{203}\right)\) | \(e\left(\frac{62}{203}\right)\) | \(e\left(\frac{103}{203}\right)\) |
\(\chi_{841}(8,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{812}\right)\) | \(e\left(\frac{799}{812}\right)\) | \(e\left(\frac{3}{406}\right)\) | \(e\left(\frac{47}{406}\right)\) | \(e\left(\frac{401}{406}\right)\) | \(e\left(\frac{79}{203}\right)\) | \(e\left(\frac{9}{812}\right)\) | \(e\left(\frac{393}{406}\right)\) | \(e\left(\frac{97}{812}\right)\) | \(e\left(\frac{243}{812}\right)\) |
\(\chi_{841}(9,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{131}{406}\right)\) | \(e\left(\frac{109}{406}\right)\) | \(e\left(\frac{131}{203}\right)\) | \(e\left(\frac{90}{203}\right)\) | \(e\left(\frac{120}{203}\right)\) | \(e\left(\frac{65}{203}\right)\) | \(e\left(\frac{393}{406}\right)\) | \(e\left(\frac{109}{203}\right)\) | \(e\left(\frac{311}{406}\right)\) | \(e\left(\frac{55}{406}\right)\) |
\(\chi_{841}(10,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{303}{812}\right)\) | \(e\left(\frac{311}{812}\right)\) | \(e\left(\frac{303}{406}\right)\) | \(e\left(\frac{281}{406}\right)\) | \(e\left(\frac{307}{406}\right)\) | \(e\left(\frac{62}{203}\right)\) | \(e\left(\frac{97}{812}\right)\) | \(e\left(\frac{311}{406}\right)\) | \(e\left(\frac{53}{812}\right)\) | \(e\left(\frac{183}{812}\right)\) |
\(\chi_{841}(11,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{81}{812}\right)\) | \(e\left(\frac{461}{812}\right)\) | \(e\left(\frac{81}{406}\right)\) | \(e\left(\frac{51}{406}\right)\) | \(e\left(\frac{271}{406}\right)\) | \(e\left(\frac{103}{203}\right)\) | \(e\left(\frac{243}{812}\right)\) | \(e\left(\frac{55}{406}\right)\) | \(e\left(\frac{183}{812}\right)\) | \(e\left(\frac{65}{812}\right)\) |
\(\chi_{841}(12,\cdot)\) | 841.i | 116 | yes | \(-1\) | \(1\) | \(e\left(\frac{77}{116}\right)\) | \(e\left(\frac{53}{116}\right)\) | \(e\left(\frac{19}{58}\right)\) | \(e\left(\frac{27}{58}\right)\) | \(e\left(\frac{7}{58}\right)\) | \(e\left(\frac{17}{29}\right)\) | \(e\left(\frac{115}{116}\right)\) | \(e\left(\frac{53}{58}\right)\) | \(e\left(\frac{15}{116}\right)\) | \(e\left(\frac{89}{116}\right)\) |
\(\chi_{841}(13,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{331}{406}\right)\) | \(e\left(\frac{325}{406}\right)\) | \(e\left(\frac{128}{203}\right)\) | \(e\left(\frac{43}{203}\right)\) | \(e\left(\frac{125}{203}\right)\) | \(e\left(\frac{110}{203}\right)\) | \(e\left(\frac{181}{406}\right)\) | \(e\left(\frac{122}{203}\right)\) | \(e\left(\frac{11}{406}\right)\) | \(e\left(\frac{15}{406}\right)\) |
\(\chi_{841}(14,\cdot)\) | 841.f | 28 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{17}{28}\right)\) |
\(\chi_{841}(15,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{27}{812}\right)\) | \(e\left(\frac{695}{812}\right)\) | \(e\left(\frac{27}{406}\right)\) | \(e\left(\frac{17}{406}\right)\) | \(e\left(\frac{361}{406}\right)\) | \(e\left(\frac{102}{203}\right)\) | \(e\left(\frac{81}{812}\right)\) | \(e\left(\frac{289}{406}\right)\) | \(e\left(\frac{61}{812}\right)\) | \(e\left(\frac{563}{812}\right)\) |
\(\chi_{841}(16,\cdot)\) | 841.j | 203 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{203}\right)\) | \(e\left(\frac{131}{203}\right)\) | \(e\left(\frac{2}{203}\right)\) | \(e\left(\frac{99}{203}\right)\) | \(e\left(\frac{132}{203}\right)\) | \(e\left(\frac{173}{203}\right)\) | \(e\left(\frac{3}{203}\right)\) | \(e\left(\frac{59}{203}\right)\) | \(e\left(\frac{100}{203}\right)\) | \(e\left(\frac{81}{203}\right)\) |
\(\chi_{841}(17,\cdot)\) | 841.i | 116 | yes | \(-1\) | \(1\) | \(e\left(\frac{67}{116}\right)\) | \(e\left(\frac{19}{116}\right)\) | \(e\left(\frac{9}{58}\right)\) | \(e\left(\frac{25}{58}\right)\) | \(e\left(\frac{43}{58}\right)\) | \(e\left(\frac{5}{29}\right)\) | \(e\left(\frac{85}{116}\right)\) | \(e\left(\frac{19}{58}\right)\) | \(e\left(\frac{1}{116}\right)\) | \(e\left(\frac{91}{116}\right)\) |
\(\chi_{841}(18,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{263}{812}\right)\) | \(e\left(\frac{755}{812}\right)\) | \(e\left(\frac{263}{406}\right)\) | \(e\left(\frac{331}{406}\right)\) | \(e\left(\frac{103}{406}\right)\) | \(e\left(\frac{159}{203}\right)\) | \(e\left(\frac{789}{812}\right)\) | \(e\left(\frac{349}{406}\right)\) | \(e\left(\frac{113}{812}\right)\) | \(e\left(\frac{191}{812}\right)\) |
\(\chi_{841}(19,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{625}{812}\right)\) | \(e\left(\frac{269}{812}\right)\) | \(e\left(\frac{219}{406}\right)\) | \(e\left(\frac{183}{406}\right)\) | \(e\left(\frac{41}{406}\right)\) | \(e\left(\frac{83}{203}\right)\) | \(e\left(\frac{251}{812}\right)\) | \(e\left(\frac{269}{406}\right)\) | \(e\left(\frac{179}{812}\right)\) | \(e\left(\frac{281}{812}\right)\) |
\(\chi_{841}(20,\cdot)\) | 841.j | 203 | yes | \(1\) | \(1\) | \(e\left(\frac{76}{203}\right)\) | \(e\left(\frac{9}{203}\right)\) | \(e\left(\frac{152}{203}\right)\) | \(e\left(\frac{13}{203}\right)\) | \(e\left(\frac{85}{203}\right)\) | \(e\left(\frac{156}{203}\right)\) | \(e\left(\frac{25}{203}\right)\) | \(e\left(\frac{18}{203}\right)\) | \(e\left(\frac{89}{203}\right)\) | \(e\left(\frac{66}{203}\right)\) |
\(\chi_{841}(21,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{101}{812}\right)\) | \(e\left(\frac{645}{812}\right)\) | \(e\left(\frac{101}{406}\right)\) | \(e\left(\frac{229}{406}\right)\) | \(e\left(\frac{373}{406}\right)\) | \(e\left(\frac{156}{203}\right)\) | \(e\left(\frac{303}{812}\right)\) | \(e\left(\frac{239}{406}\right)\) | \(e\left(\frac{559}{812}\right)\) | \(e\left(\frac{61}{812}\right)\) |
\(\chi_{841}(22,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{41}{406}\right)\) | \(e\left(\frac{93}{406}\right)\) | \(e\left(\frac{41}{203}\right)\) | \(e\left(\frac{101}{203}\right)\) | \(e\left(\frac{67}{203}\right)\) | \(e\left(\frac{197}{203}\right)\) | \(e\left(\frac{123}{406}\right)\) | \(e\left(\frac{93}{203}\right)\) | \(e\left(\frac{243}{406}\right)\) | \(e\left(\frac{73}{406}\right)\) |
\(\chi_{841}(23,\cdot)\) | 841.j | 203 | yes | \(1\) | \(1\) | \(e\left(\frac{201}{203}\right)\) | \(e\left(\frac{144}{203}\right)\) | \(e\left(\frac{199}{203}\right)\) | \(e\left(\frac{5}{203}\right)\) | \(e\left(\frac{142}{203}\right)\) | \(e\left(\frac{60}{203}\right)\) | \(e\left(\frac{197}{203}\right)\) | \(e\left(\frac{85}{203}\right)\) | \(e\left(\frac{3}{203}\right)\) | \(e\left(\frac{41}{203}\right)\) |
\(\chi_{841}(24,\cdot)\) | 841.j | 203 | yes | \(1\) | \(1\) | \(e\left(\frac{135}{203}\right)\) | \(e\left(\frac{24}{203}\right)\) | \(e\left(\frac{67}{203}\right)\) | \(e\left(\frac{170}{203}\right)\) | \(e\left(\frac{159}{203}\right)\) | \(e\left(\frac{10}{203}\right)\) | \(e\left(\frac{202}{203}\right)\) | \(e\left(\frac{48}{203}\right)\) | \(e\left(\frac{102}{203}\right)\) | \(e\left(\frac{176}{203}\right)\) |
\(\chi_{841}(25,\cdot)\) | 841.j | 203 | yes | \(1\) | \(1\) | \(e\left(\frac{151}{203}\right)\) | \(e\left(\frac{90}{203}\right)\) | \(e\left(\frac{99}{203}\right)\) | \(e\left(\frac{130}{203}\right)\) | \(e\left(\frac{38}{203}\right)\) | \(e\left(\frac{139}{203}\right)\) | \(e\left(\frac{47}{203}\right)\) | \(e\left(\frac{180}{203}\right)\) | \(e\left(\frac{78}{203}\right)\) | \(e\left(\frac{51}{203}\right)\) |
\(\chi_{841}(26,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{663}{812}\right)\) | \(e\left(\frac{375}{812}\right)\) | \(e\left(\frac{257}{406}\right)\) | \(e\left(\frac{237}{406}\right)\) | \(e\left(\frac{113}{406}\right)\) | \(e\left(\frac{1}{203}\right)\) | \(e\left(\frac{365}{812}\right)\) | \(e\left(\frac{375}{406}\right)\) | \(e\left(\frac{325}{812}\right)\) | \(e\left(\frac{111}{812}\right)\) |
\(\chi_{841}(27,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{799}{812}\right)\) | \(e\left(\frac{327}{812}\right)\) | \(e\left(\frac{393}{406}\right)\) | \(e\left(\frac{67}{406}\right)\) | \(e\left(\frac{157}{406}\right)\) | \(e\left(\frac{199}{203}\right)\) | \(e\left(\frac{773}{812}\right)\) | \(e\left(\frac{327}{406}\right)\) | \(e\left(\frac{121}{812}\right)\) | \(e\left(\frac{571}{812}\right)\) |
\(\chi_{841}(28,\cdot)\) | 841.h | 58 | yes | \(1\) | \(1\) | \(e\left(\frac{27}{58}\right)\) | \(e\left(\frac{57}{58}\right)\) | \(e\left(\frac{27}{29}\right)\) | \(e\left(\frac{17}{29}\right)\) | \(e\left(\frac{13}{29}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{23}{58}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(e\left(\frac{3}{58}\right)\) | \(e\left(\frac{41}{58}\right)\) |
\(\chi_{841}(30,\cdot)\) | 841.g | 29 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{15}{29}\right)\) | \(e\left(\frac{2}{29}\right)\) | \(e\left(\frac{12}{29}\right)\) | \(e\left(\frac{16}{29}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{13}{29}\right)\) | \(e\left(\frac{23}{29}\right)\) |
\(\chi_{841}(31,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{421}{812}\right)\) | \(e\left(\frac{341}{812}\right)\) | \(e\left(\frac{15}{406}\right)\) | \(e\left(\frac{235}{406}\right)\) | \(e\left(\frac{381}{406}\right)\) | \(e\left(\frac{192}{203}\right)\) | \(e\left(\frac{451}{812}\right)\) | \(e\left(\frac{341}{406}\right)\) | \(e\left(\frac{79}{812}\right)\) | \(e\left(\frac{809}{812}\right)\) |
\(\chi_{841}(32,\cdot)\) | 841.l | 812 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{812}\right)\) | \(e\left(\frac{249}{812}\right)\) | \(e\left(\frac{5}{406}\right)\) | \(e\left(\frac{349}{406}\right)\) | \(e\left(\frac{127}{406}\right)\) | \(e\left(\frac{64}{203}\right)\) | \(e\left(\frac{15}{812}\right)\) | \(e\left(\frac{249}{406}\right)\) | \(e\left(\frac{703}{812}\right)\) | \(e\left(\frac{405}{812}\right)\) |
\(\chi_{841}(33,\cdot)\) | 841.k | 406 | yes | \(1\) | \(1\) | \(e\left(\frac{309}{406}\right)\) | \(e\left(\frac{285}{406}\right)\) | \(e\left(\frac{106}{203}\right)\) | \(e\left(\frac{172}{203}\right)\) | \(e\left(\frac{94}{203}\right)\) | \(e\left(\frac{34}{203}\right)\) | \(e\left(\frac{115}{406}\right)\) | \(e\left(\frac{82}{203}\right)\) | \(e\left(\frac{247}{406}\right)\) | \(e\left(\frac{263}{406}\right)\) |