Properties

Label 841.63
Modulus $841$
Conductor $29$
Order $14$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([11]))
 
pari: [g,chi] = znchar(Mod(63,841))
 

Basic properties

Modulus: \(841\)
Conductor: \(29\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{29}(5,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 841.e

\(\chi_{841}(63,\cdot)\) \(\chi_{841}(196,\cdot)\) \(\chi_{841}(236,\cdot)\) \(\chi_{841}(267,\cdot)\) \(\chi_{841}(270,\cdot)\) \(\chi_{841}(651,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\(2\) → \(e\left(\frac{11}{14}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 841 }(63, a) \) \(1\)\(1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{9}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 841 }(63,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 841 }(63,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 841 }(63,·),\chi_{ 841 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 841 }(63,·)) \;\) at \(\; a,b = \) e.g. 1,2