sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(817, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([14,32]))
pari:[g,chi] = znchar(Mod(615,817))
| Modulus: | \(817\) | |
| Conductor: | \(817\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(21\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{817}(182,\cdot)\)
\(\chi_{817}(197,\cdot)\)
\(\chi_{817}(239,\cdot)\)
\(\chi_{817}(273,\cdot)\)
\(\chi_{817}(296,\cdot)\)
\(\chi_{817}(410,\cdot)\)
\(\chi_{817}(444,\cdot)\)
\(\chi_{817}(482,\cdot)\)
\(\chi_{817}(615,\cdot)\)
\(\chi_{817}(676,\cdot)\)
\(\chi_{817}(748,\cdot)\)
\(\chi_{817}(771,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((173,476)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{16}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 817 }(615, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)