| L(s) = 1 | + (0.826 − 0.563i)2-s + (0.826 + 0.563i)3-s + (0.365 − 0.930i)4-s + (−0.733 + 0.680i)5-s + 6-s + (−0.5 − 0.866i)7-s + (−0.222 − 0.974i)8-s + (0.365 + 0.930i)9-s + (−0.222 + 0.974i)10-s + (0.623 − 0.781i)11-s + (0.826 − 0.563i)12-s + (0.955 + 0.294i)13-s + (−0.900 − 0.433i)14-s + (−0.988 + 0.149i)15-s + (−0.733 − 0.680i)16-s + (−0.222 + 0.974i)17-s + ⋯ |
| L(s) = 1 | + (0.826 − 0.563i)2-s + (0.826 + 0.563i)3-s + (0.365 − 0.930i)4-s + (−0.733 + 0.680i)5-s + 6-s + (−0.5 − 0.866i)7-s + (−0.222 − 0.974i)8-s + (0.365 + 0.930i)9-s + (−0.222 + 0.974i)10-s + (0.623 − 0.781i)11-s + (0.826 − 0.563i)12-s + (0.955 + 0.294i)13-s + (−0.900 − 0.433i)14-s + (−0.988 + 0.149i)15-s + (−0.733 − 0.680i)16-s + (−0.222 + 0.974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 817 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 817 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.634971844 - 1.063566804i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.634971844 - 1.063566804i\) |
| \(L(1)\) |
\(\approx\) |
\(1.908957994 - 0.4594914516i\) |
| \(L(1)\) |
\(\approx\) |
\(1.908957994 - 0.4594914516i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 19 | \( 1 \) |
| 43 | \( 1 \) |
| good | 2 | \( 1 + (0.826 - 0.563i)T \) |
| 3 | \( 1 + (0.826 + 0.563i)T \) |
| 5 | \( 1 + (-0.733 + 0.680i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.623 - 0.781i)T \) |
| 13 | \( 1 + (0.955 + 0.294i)T \) |
| 17 | \( 1 + (-0.222 + 0.974i)T \) |
| 23 | \( 1 + (0.623 - 0.781i)T \) |
| 29 | \( 1 + (0.826 - 0.563i)T \) |
| 31 | \( 1 + (0.826 - 0.563i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.826 - 0.563i)T \) |
| 47 | \( 1 + (0.365 - 0.930i)T \) |
| 53 | \( 1 + (-0.222 + 0.974i)T \) |
| 59 | \( 1 + (-0.733 - 0.680i)T \) |
| 61 | \( 1 + (0.0747 - 0.997i)T \) |
| 67 | \( 1 + (0.623 + 0.781i)T \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.222 - 0.974i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.0747 - 0.997i)T \) |
| 89 | \( 1 + (-0.900 + 0.433i)T \) |
| 97 | \( 1 + (0.365 + 0.930i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.72562193585886081720048751895, −21.33522987465922493176900633307, −20.82578879817893851276196578108, −19.896464249909778624553322765067, −19.41255107039300152668400245881, −18.217047709698528682050069687417, −17.537646626900219726935158065863, −16.246833836094148266665905654967, −15.6638086224227350288263187846, −15.14580704675919585172202814223, −14.16743002185949785619153641841, −13.36354033968693075879239323702, −12.55035221174355835704506764702, −12.15926125976931634739537126574, −11.26417714245440899553816813730, −9.411293679503930222636883849204, −8.84454911455978622163547500898, −8.0678345304671600253739581462, −7.16120460409213370041242450706, −6.4616155575190546053449009934, −5.33687106443076896911720837564, −4.34064409374890857479014324309, −3.42273688031693975443684312077, −2.66732904951564311396176176710, −1.33065365981652813694784023370,
1.04546644378162528744657787719, 2.48895634572159004770241083005, 3.43245522328437154550847858621, 3.87519087285960914574343311708, 4.58190323453920937417814150728, 6.20479640579891004663456058000, 6.75656622413621285409570882978, 8.00097373273211687029869976200, 8.903164603734559178576119554166, 10.04039537204143682810001791116, 10.72617400054672682001680728721, 11.228329100979245481672864222566, 12.374583768667647065332716984931, 13.48087323973947381287807532042, 13.90087510010004479257731216440, 14.6843747812271386898691114402, 15.51117154001194822280021857729, 16.07360464252964678180672124500, 17.05676557966641830115334188889, 18.87803962801734606944766017377, 19.00643943685711784030995620076, 19.85334898304580119047013624076, 20.48154071285662403536920569395, 21.33494032777867041905071970336, 22.067151947645718203757216515856