Normalized defining polynomial
\( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(205924456521\) \(\medspace = 3^{6}\cdot 7^{10}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(8.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}7^{5/6}\approx 8.766151944295878$ | ||
Ramified primes: | \(3\), \(7\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(21=3\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{21}(1,·)$, $\chi_{21}(2,·)$, $\chi_{21}(4,·)$, $\chi_{21}(5,·)$, $\chi_{21}(8,·)$, $\chi_{21}(10,·)$, $\chi_{21}(11,·)$, $\chi_{21}(13,·)$, $\chi_{21}(16,·)$, $\chi_{21}(17,·)$, $\chi_{21}(19,·)$, $\chi_{21}(20,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})\)$^{3}$, 6.0.64827.1$^{3}$, \(\Q(\zeta_{21})\)$^{24}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -a \) (order $42$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{3}+1$, $a^{10}-a^{8}+a^{3}$, $a-1$, $a^{2}-1$, $a^{4}-1$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 70.3993980027 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 70.3993980027 \cdot 1}{42\cdot\sqrt{205924456521}}\cr\approx \mathstrut & 0.227271459514 \end{aligned}\]
Galois group
$C_2\times C_6$ (as 12T2):
An abelian group of order 12 |
The 12 conjugacy class representatives for $C_6\times C_2$ |
Character table for $C_6\times C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-3}, \sqrt{-7})\), 6.0.64827.1, \(\Q(\zeta_{7})\), \(\Q(\zeta_{21})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.12.6.2 | $x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
\(7\) | 7.6.5.5 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
7.6.5.5 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |