Properties

Label 8042.r
Modulus $8042$
Conductor $4021$
Order $402$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8042, base_ring=CyclotomicField(402)) M = H._module chi = DirichletCharacter(H, M([35])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(53,8042)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8042\)
Conductor: \(4021\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(402\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 4021.r
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{201})$
Fixed field: Number field defined by a degree 402 polynomial (not computed)

First 31 of 132 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{8042}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{201}\right)\) \(e\left(\frac{125}{201}\right)\) \(-1\) \(e\left(\frac{121}{201}\right)\) \(e\left(\frac{251}{402}\right)\) \(e\left(\frac{2}{67}\right)\) \(e\left(\frac{85}{201}\right)\) \(e\left(\frac{22}{67}\right)\) \(e\left(\frac{343}{402}\right)\) \(e\left(\frac{121}{402}\right)\)
\(\chi_{8042}(147,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{201}\right)\) \(e\left(\frac{32}{201}\right)\) \(-1\) \(e\left(\frac{76}{201}\right)\) \(e\left(\frac{53}{402}\right)\) \(e\left(\frac{45}{67}\right)\) \(e\left(\frac{70}{201}\right)\) \(e\left(\frac{26}{67}\right)\) \(e\left(\frac{247}{402}\right)\) \(e\left(\frac{277}{402}\right)\)
\(\chi_{8042}(153,\cdot)\) \(1\) \(1\) \(e\left(\frac{154}{201}\right)\) \(e\left(\frac{172}{201}\right)\) \(-1\) \(e\left(\frac{107}{201}\right)\) \(e\left(\frac{109}{402}\right)\) \(e\left(\frac{66}{67}\right)\) \(e\left(\frac{125}{201}\right)\) \(e\left(\frac{56}{67}\right)\) \(e\left(\frac{197}{402}\right)\) \(e\left(\frac{107}{402}\right)\)
\(\chi_{8042}(245,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{201}\right)\) \(e\left(\frac{101}{201}\right)\) \(-1\) \(e\left(\frac{64}{201}\right)\) \(e\left(\frac{161}{402}\right)\) \(e\left(\frac{52}{67}\right)\) \(e\left(\frac{133}{201}\right)\) \(e\left(\frac{36}{67}\right)\) \(e\left(\frac{7}{402}\right)\) \(e\left(\frac{265}{402}\right)\)
\(\chi_{8042}(249,\cdot)\) \(1\) \(1\) \(e\left(\frac{100}{201}\right)\) \(e\left(\frac{190}{201}\right)\) \(-1\) \(e\left(\frac{200}{201}\right)\) \(e\left(\frac{277}{402}\right)\) \(e\left(\frac{62}{67}\right)\) \(e\left(\frac{89}{201}\right)\) \(e\left(\frac{12}{67}\right)\) \(e\left(\frac{47}{402}\right)\) \(e\left(\frac{401}{402}\right)\)
\(\chi_{8042}(251,\cdot)\) \(1\) \(1\) \(e\left(\frac{199}{201}\right)\) \(e\left(\frac{157}{201}\right)\) \(-1\) \(e\left(\frac{197}{201}\right)\) \(e\left(\frac{103}{402}\right)\) \(e\left(\frac{47}{67}\right)\) \(e\left(\frac{155}{201}\right)\) \(e\left(\frac{48}{67}\right)\) \(e\left(\frac{389}{402}\right)\) \(e\left(\frac{197}{402}\right)\)
\(\chi_{8042}(255,\cdot)\) \(1\) \(1\) \(e\left(\frac{148}{201}\right)\) \(e\left(\frac{40}{201}\right)\) \(-1\) \(e\left(\frac{95}{201}\right)\) \(e\left(\frac{217}{402}\right)\) \(e\left(\frac{6}{67}\right)\) \(e\left(\frac{188}{201}\right)\) \(e\left(\frac{66}{67}\right)\) \(e\left(\frac{359}{402}\right)\) \(e\left(\frac{95}{402}\right)\)
\(\chi_{8042}(287,\cdot)\) \(1\) \(1\) \(e\left(\frac{130}{201}\right)\) \(e\left(\frac{46}{201}\right)\) \(-1\) \(e\left(\frac{59}{201}\right)\) \(e\left(\frac{139}{402}\right)\) \(e\left(\frac{27}{67}\right)\) \(e\left(\frac{176}{201}\right)\) \(e\left(\frac{29}{67}\right)\) \(e\left(\frac{41}{402}\right)\) \(e\left(\frac{59}{402}\right)\)
\(\chi_{8042}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{146}{201}\right)\) \(e\left(\frac{197}{201}\right)\) \(-1\) \(e\left(\frac{91}{201}\right)\) \(e\left(\frac{119}{402}\right)\) \(e\left(\frac{53}{67}\right)\) \(e\left(\frac{142}{201}\right)\) \(e\left(\frac{47}{67}\right)\) \(e\left(\frac{145}{402}\right)\) \(e\left(\frac{91}{402}\right)\)
\(\chi_{8042}(341,\cdot)\) \(1\) \(1\) \(e\left(\frac{128}{201}\right)\) \(e\left(\frac{2}{201}\right)\) \(-1\) \(e\left(\frac{55}{201}\right)\) \(e\left(\frac{41}{402}\right)\) \(e\left(\frac{7}{67}\right)\) \(e\left(\frac{130}{201}\right)\) \(e\left(\frac{10}{67}\right)\) \(e\left(\frac{229}{402}\right)\) \(e\left(\frac{55}{402}\right)\)
\(\chi_{8042}(381,\cdot)\) \(1\) \(1\) \(e\left(\frac{92}{201}\right)\) \(e\left(\frac{14}{201}\right)\) \(-1\) \(e\left(\frac{184}{201}\right)\) \(e\left(\frac{287}{402}\right)\) \(e\left(\frac{49}{67}\right)\) \(e\left(\frac{106}{201}\right)\) \(e\left(\frac{3}{67}\right)\) \(e\left(\frac{397}{402}\right)\) \(e\left(\frac{385}{402}\right)\)
\(\chi_{8042}(415,\cdot)\) \(1\) \(1\) \(e\left(\frac{94}{201}\right)\) \(e\left(\frac{58}{201}\right)\) \(-1\) \(e\left(\frac{188}{201}\right)\) \(e\left(\frac{385}{402}\right)\) \(e\left(\frac{2}{67}\right)\) \(e\left(\frac{152}{201}\right)\) \(e\left(\frac{22}{67}\right)\) \(e\left(\frac{209}{402}\right)\) \(e\left(\frac{389}{402}\right)\)
\(\chi_{8042}(425,\cdot)\) \(1\) \(1\) \(e\left(\frac{142}{201}\right)\) \(e\left(\frac{109}{201}\right)\) \(-1\) \(e\left(\frac{83}{201}\right)\) \(e\left(\frac{325}{402}\right)\) \(e\left(\frac{13}{67}\right)\) \(e\left(\frac{50}{201}\right)\) \(e\left(\frac{9}{67}\right)\) \(e\left(\frac{119}{402}\right)\) \(e\left(\frac{83}{402}\right)\)
\(\chi_{8042}(439,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{201}\right)\) \(e\left(\frac{23}{201}\right)\) \(-1\) \(e\left(\frac{130}{201}\right)\) \(e\left(\frac{371}{402}\right)\) \(e\left(\frac{47}{67}\right)\) \(e\left(\frac{88}{201}\right)\) \(e\left(\frac{48}{67}\right)\) \(e\left(\frac{121}{402}\right)\) \(e\left(\frac{331}{402}\right)\)
\(\chi_{8042}(543,\cdot)\) \(1\) \(1\) \(e\left(\frac{176}{201}\right)\) \(e\left(\frac{53}{201}\right)\) \(-1\) \(e\left(\frac{151}{201}\right)\) \(e\left(\frac{383}{402}\right)\) \(e\left(\frac{18}{67}\right)\) \(e\left(\frac{28}{201}\right)\) \(e\left(\frac{64}{67}\right)\) \(e\left(\frac{139}{402}\right)\) \(e\left(\frac{151}{402}\right)\)
\(\chi_{8042}(549,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{201}\right)\) \(e\left(\frac{167}{201}\right)\) \(-1\) \(e\left(\frac{70}{201}\right)\) \(e\left(\frac{107}{402}\right)\) \(e\left(\frac{15}{67}\right)\) \(e\left(\frac{1}{201}\right)\) \(e\left(\frac{31}{67}\right)\) \(e\left(\frac{127}{402}\right)\) \(e\left(\frac{271}{402}\right)\)
\(\chi_{8042}(557,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{201}\right)\) \(e\left(\frac{89}{201}\right)\) \(-1\) \(e\left(\frac{136}{201}\right)\) \(e\left(\frac{317}{402}\right)\) \(e\left(\frac{10}{67}\right)\) \(e\left(\frac{157}{201}\right)\) \(e\left(\frac{43}{67}\right)\) \(e\left(\frac{241}{402}\right)\) \(e\left(\frac{337}{402}\right)\)
\(\chi_{8042}(599,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{201}\right)\) \(e\left(\frac{85}{201}\right)\) \(-1\) \(e\left(\frac{26}{201}\right)\) \(e\left(\frac{235}{402}\right)\) \(e\left(\frac{63}{67}\right)\) \(e\left(\frac{98}{201}\right)\) \(e\left(\frac{23}{67}\right)\) \(e\left(\frac{185}{402}\right)\) \(e\left(\frac{227}{402}\right)\)
\(\chi_{8042}(635,\cdot)\) \(1\) \(1\) \(e\left(\frac{86}{201}\right)\) \(e\left(\frac{83}{201}\right)\) \(-1\) \(e\left(\frac{172}{201}\right)\) \(e\left(\frac{395}{402}\right)\) \(e\left(\frac{56}{67}\right)\) \(e\left(\frac{169}{201}\right)\) \(e\left(\frac{13}{67}\right)\) \(e\left(\frac{157}{402}\right)\) \(e\left(\frac{373}{402}\right)\)
\(\chi_{8042}(717,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{201}\right)\) \(e\left(\frac{143}{201}\right)\) \(-1\) \(e\left(\frac{13}{201}\right)\) \(e\left(\frac{17}{402}\right)\) \(e\left(\frac{65}{67}\right)\) \(e\left(\frac{49}{201}\right)\) \(e\left(\frac{45}{67}\right)\) \(e\left(\frac{193}{402}\right)\) \(e\left(\frac{13}{402}\right)\)
\(\chi_{8042}(733,\cdot)\) \(1\) \(1\) \(e\left(\frac{112}{201}\right)\) \(e\left(\frac{52}{201}\right)\) \(-1\) \(e\left(\frac{23}{201}\right)\) \(e\left(\frac{61}{402}\right)\) \(e\left(\frac{48}{67}\right)\) \(e\left(\frac{164}{201}\right)\) \(e\left(\frac{59}{67}\right)\) \(e\left(\frac{125}{402}\right)\) \(e\left(\frac{23}{402}\right)\)
\(\chi_{8042}(801,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{201}\right)\) \(e\left(\frac{44}{201}\right)\) \(-1\) \(e\left(\frac{4}{201}\right)\) \(e\left(\frac{299}{402}\right)\) \(e\left(\frac{20}{67}\right)\) \(e\left(\frac{46}{201}\right)\) \(e\left(\frac{19}{67}\right)\) \(e\left(\frac{13}{402}\right)\) \(e\left(\frac{205}{402}\right)\)
\(\chi_{8042}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{201}\right)\) \(e\left(\frac{29}{201}\right)\) \(-1\) \(e\left(\frac{94}{201}\right)\) \(e\left(\frac{293}{402}\right)\) \(e\left(\frac{1}{67}\right)\) \(e\left(\frac{76}{201}\right)\) \(e\left(\frac{11}{67}\right)\) \(e\left(\frac{205}{402}\right)\) \(e\left(\frac{295}{402}\right)\)
\(\chi_{8042}(859,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{201}\right)\) \(e\left(\frac{148}{201}\right)\) \(-1\) \(e\left(\frac{50}{201}\right)\) \(e\left(\frac{19}{402}\right)\) \(e\left(\frac{49}{67}\right)\) \(e\left(\frac{173}{201}\right)\) \(e\left(\frac{3}{67}\right)\) \(e\left(\frac{263}{402}\right)\) \(e\left(\frac{251}{402}\right)\)
\(\chi_{8042}(905,\cdot)\) \(1\) \(1\) \(e\left(\frac{170}{201}\right)\) \(e\left(\frac{122}{201}\right)\) \(-1\) \(e\left(\frac{139}{201}\right)\) \(e\left(\frac{89}{402}\right)\) \(e\left(\frac{25}{67}\right)\) \(e\left(\frac{91}{201}\right)\) \(e\left(\frac{7}{67}\right)\) \(e\left(\frac{301}{402}\right)\) \(e\left(\frac{139}{402}\right)\)
\(\chi_{8042}(915,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{201}\right)\) \(e\left(\frac{35}{201}\right)\) \(-1\) \(e\left(\frac{58}{201}\right)\) \(e\left(\frac{215}{402}\right)\) \(e\left(\frac{22}{67}\right)\) \(e\left(\frac{64}{201}\right)\) \(e\left(\frac{41}{67}\right)\) \(e\left(\frac{289}{402}\right)\) \(e\left(\frac{259}{402}\right)\)
\(\chi_{8042}(983,\cdot)\) \(1\) \(1\) \(e\left(\frac{110}{201}\right)\) \(e\left(\frac{8}{201}\right)\) \(-1\) \(e\left(\frac{19}{201}\right)\) \(e\left(\frac{365}{402}\right)\) \(e\left(\frac{28}{67}\right)\) \(e\left(\frac{118}{201}\right)\) \(e\left(\frac{40}{67}\right)\) \(e\left(\frac{313}{402}\right)\) \(e\left(\frac{19}{402}\right)\)
\(\chi_{8042}(1001,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{201}\right)\) \(e\left(\frac{136}{201}\right)\) \(-1\) \(e\left(\frac{122}{201}\right)\) \(e\left(\frac{175}{402}\right)\) \(e\left(\frac{7}{67}\right)\) \(e\left(\frac{197}{201}\right)\) \(e\left(\frac{10}{67}\right)\) \(e\left(\frac{95}{402}\right)\) \(e\left(\frac{323}{402}\right)\)
\(\chi_{8042}(1195,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{201}\right)\) \(e\left(\frac{11}{201}\right)\) \(-1\) \(e\left(\frac{1}{201}\right)\) \(e\left(\frac{125}{402}\right)\) \(e\left(\frac{5}{67}\right)\) \(e\left(\frac{112}{201}\right)\) \(e\left(\frac{55}{67}\right)\) \(e\left(\frac{355}{402}\right)\) \(e\left(\frac{1}{402}\right)\)
\(\chi_{8042}(1211,\cdot)\) \(1\) \(1\) \(e\left(\frac{194}{201}\right)\) \(e\left(\frac{47}{201}\right)\) \(-1\) \(e\left(\frac{187}{201}\right)\) \(e\left(\frac{59}{402}\right)\) \(e\left(\frac{64}{67}\right)\) \(e\left(\frac{40}{201}\right)\) \(e\left(\frac{34}{67}\right)\) \(e\left(\frac{55}{402}\right)\) \(e\left(\frac{187}{402}\right)\)
\(\chi_{8042}(1259,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{201}\right)\) \(e\left(\frac{43}{201}\right)\) \(-1\) \(e\left(\frac{77}{201}\right)\) \(e\left(\frac{379}{402}\right)\) \(e\left(\frac{50}{67}\right)\) \(e\left(\frac{182}{201}\right)\) \(e\left(\frac{14}{67}\right)\) \(e\left(\frac{401}{402}\right)\) \(e\left(\frac{77}{402}\right)\)