sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8042, base_ring=CyclotomicField(402))
M = H._module
chi = DirichletCharacter(H, M([173]))
pari:[g,chi] = znchar(Mod(245,8042))
\(\chi_{8042}(53,\cdot)\)
\(\chi_{8042}(147,\cdot)\)
\(\chi_{8042}(153,\cdot)\)
\(\chi_{8042}(245,\cdot)\)
\(\chi_{8042}(249,\cdot)\)
\(\chi_{8042}(251,\cdot)\)
\(\chi_{8042}(255,\cdot)\)
\(\chi_{8042}(287,\cdot)\)
\(\chi_{8042}(331,\cdot)\)
\(\chi_{8042}(341,\cdot)\)
\(\chi_{8042}(381,\cdot)\)
\(\chi_{8042}(415,\cdot)\)
\(\chi_{8042}(425,\cdot)\)
\(\chi_{8042}(439,\cdot)\)
\(\chi_{8042}(543,\cdot)\)
\(\chi_{8042}(549,\cdot)\)
\(\chi_{8042}(557,\cdot)\)
\(\chi_{8042}(599,\cdot)\)
\(\chi_{8042}(635,\cdot)\)
\(\chi_{8042}(717,\cdot)\)
\(\chi_{8042}(733,\cdot)\)
\(\chi_{8042}(801,\cdot)\)
\(\chi_{8042}(841,\cdot)\)
\(\chi_{8042}(859,\cdot)\)
\(\chi_{8042}(905,\cdot)\)
\(\chi_{8042}(915,\cdot)\)
\(\chi_{8042}(983,\cdot)\)
\(\chi_{8042}(1001,\cdot)\)
\(\chi_{8042}(1195,\cdot)\)
\(\chi_{8042}(1211,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(4023\) → \(e\left(\frac{173}{402}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 8042 }(245, a) \) |
\(1\) | \(1\) | \(e\left(\frac{32}{201}\right)\) | \(e\left(\frac{101}{201}\right)\) | \(-1\) | \(e\left(\frac{64}{201}\right)\) | \(e\left(\frac{161}{402}\right)\) | \(e\left(\frac{52}{67}\right)\) | \(e\left(\frac{133}{201}\right)\) | \(e\left(\frac{36}{67}\right)\) | \(e\left(\frac{7}{402}\right)\) | \(e\left(\frac{265}{402}\right)\) |
sage:chi.jacobi_sum(n)