Properties

Label 8042.415
Modulus $8042$
Conductor $4021$
Order $402$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8042, base_ring=CyclotomicField(402)) M = H._module chi = DirichletCharacter(H, M([169]))
 
Copy content pari:[g,chi] = znchar(Mod(415,8042))
 

Basic properties

Modulus: \(8042\)
Conductor: \(4021\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(402\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4021}(415,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8042.r

\(\chi_{8042}(53,\cdot)\) \(\chi_{8042}(147,\cdot)\) \(\chi_{8042}(153,\cdot)\) \(\chi_{8042}(245,\cdot)\) \(\chi_{8042}(249,\cdot)\) \(\chi_{8042}(251,\cdot)\) \(\chi_{8042}(255,\cdot)\) \(\chi_{8042}(287,\cdot)\) \(\chi_{8042}(331,\cdot)\) \(\chi_{8042}(341,\cdot)\) \(\chi_{8042}(381,\cdot)\) \(\chi_{8042}(415,\cdot)\) \(\chi_{8042}(425,\cdot)\) \(\chi_{8042}(439,\cdot)\) \(\chi_{8042}(543,\cdot)\) \(\chi_{8042}(549,\cdot)\) \(\chi_{8042}(557,\cdot)\) \(\chi_{8042}(599,\cdot)\) \(\chi_{8042}(635,\cdot)\) \(\chi_{8042}(717,\cdot)\) \(\chi_{8042}(733,\cdot)\) \(\chi_{8042}(801,\cdot)\) \(\chi_{8042}(841,\cdot)\) \(\chi_{8042}(859,\cdot)\) \(\chi_{8042}(905,\cdot)\) \(\chi_{8042}(915,\cdot)\) \(\chi_{8042}(983,\cdot)\) \(\chi_{8042}(1001,\cdot)\) \(\chi_{8042}(1195,\cdot)\) \(\chi_{8042}(1211,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{201})$
Fixed field: Number field defined by a degree 402 polynomial (not computed)

Values on generators

\(4023\) → \(e\left(\frac{169}{402}\right)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8042 }(415, a) \) \(1\)\(1\)\(e\left(\frac{94}{201}\right)\)\(e\left(\frac{58}{201}\right)\)\(-1\)\(e\left(\frac{188}{201}\right)\)\(e\left(\frac{385}{402}\right)\)\(e\left(\frac{2}{67}\right)\)\(e\left(\frac{152}{201}\right)\)\(e\left(\frac{22}{67}\right)\)\(e\left(\frac{209}{402}\right)\)\(e\left(\frac{389}{402}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8042 }(415,a) \;\) at \(\;a = \) e.g. 2