Properties

Label 8041.fr
Modulus $8041$
Conductor $8041$
Order $420$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([42,105,320])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,8041)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8041\)
Conductor: \(8041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{8041}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{341}{420}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{293}{420}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{131}{210}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{13}{84}\right)\)
\(\chi_{8041}(310,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{251}{420}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{143}{420}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{41}{210}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{31}{84}\right)\)
\(\chi_{8041}(404,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{233}{420}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{29}{420}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{23}{210}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{1}{84}\right)\)
\(\chi_{8041}(497,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{211}{420}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{403}{420}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{1}{210}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{11}{84}\right)\)
\(\chi_{8041}(574,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{281}{420}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{53}{420}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{71}{210}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{25}{84}\right)\)
\(\chi_{8041}(633,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{319}{420}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{247}{420}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{109}{210}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{23}{84}\right)\)
\(\chi_{8041}(701,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{383}{420}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{419}{420}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{173}{210}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{55}{84}\right)\)
\(\chi_{8041}(744,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{257}{420}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{41}{420}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{47}{210}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{13}{84}\right)\)
\(\chi_{8041}(1041,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{167}{420}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{311}{420}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{167}{210}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{31}{84}\right)\)
\(\chi_{8041}(1084,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{209}{420}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{17}{420}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{209}{210}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{73}{84}\right)\)
\(\chi_{8041}(1135,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{401}{420}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{113}{420}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{191}{210}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{1}{84}\right)\)
\(\chi_{8041}(1228,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{127}{420}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{151}{420}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{127}{210}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{11}{84}\right)\)
\(\chi_{8041}(1262,\cdot)\) \(-1\) \(1\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{323}{420}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{179}{420}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{113}{210}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{67}{84}\right)\)
\(\chi_{8041}(1271,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{169}{420}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{277}{420}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{169}{210}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{53}{84}\right)\)
\(\chi_{8041}(1305,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{197}{420}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{221}{420}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{197}{210}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{25}{84}\right)\)
\(\chi_{8041}(1432,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{131}{420}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{83}{420}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{131}{210}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{55}{84}\right)\)
\(\chi_{8041}(1823,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{23}{420}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{239}{420}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{23}{210}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{43}{84}\right)\)
\(\chi_{8041}(1866,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{317}{420}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{281}{420}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{107}{210}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{1}{84}\right)\)
\(\chi_{8041}(1993,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{71}{420}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{263}{420}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{71}{210}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{67}{84}\right)\)
\(\chi_{8041}(2087,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{13}{420}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{409}{420}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{13}{210}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{17}{84}\right)\)
\(\chi_{8041}(2163,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{47}{420}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{251}{420}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{47}{210}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{55}{84}\right)\)
\(\chi_{8041}(2206,\cdot)\) \(-1\) \(1\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{89}{420}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{377}{420}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{89}{210}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{13}{84}\right)\)
\(\chi_{8041}(2274,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{313}{420}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{349}{420}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{103}{210}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{41}{84}\right)\)
\(\chi_{8041}(2461,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{373}{420}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{169}{420}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{163}{210}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{29}{84}\right)\)
\(\chi_{8041}(2503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{419}{420}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{227}{420}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{209}{210}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{31}{84}\right)\)
\(\chi_{8041}(2554,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{191}{420}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{323}{420}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{191}{210}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{43}{84}\right)\)
\(\chi_{8041}(2648,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{353}{420}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{89}{420}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{143}{210}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{61}{84}\right)\)
\(\chi_{8041}(2690,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{379}{420}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{67}{420}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{169}{210}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{11}{84}\right)\)
\(\chi_{8041}(2724,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{407}{420}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{11}{420}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{197}{210}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{67}{84}\right)\)
\(\chi_{8041}(2767,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{29}{420}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{137}{420}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{29}{210}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{25}{84}\right)\)
\(\chi_{8041}(2818,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{181}{420}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{73}{420}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{181}{210}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{17}{84}\right)\)