Properties

Label 8041.1305
Modulus $8041$
Conductor $8041$
Order $420$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([294,105,260]))
 
Copy content pari:[g,chi] = znchar(Mod(1305,8041))
 

Basic properties

Modulus: \(8041\)
Conductor: \(8041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8041.fr

\(\chi_{8041}(13,\cdot)\) \(\chi_{8041}(310,\cdot)\) \(\chi_{8041}(404,\cdot)\) \(\chi_{8041}(497,\cdot)\) \(\chi_{8041}(574,\cdot)\) \(\chi_{8041}(633,\cdot)\) \(\chi_{8041}(701,\cdot)\) \(\chi_{8041}(744,\cdot)\) \(\chi_{8041}(1041,\cdot)\) \(\chi_{8041}(1084,\cdot)\) \(\chi_{8041}(1135,\cdot)\) \(\chi_{8041}(1228,\cdot)\) \(\chi_{8041}(1262,\cdot)\) \(\chi_{8041}(1271,\cdot)\) \(\chi_{8041}(1305,\cdot)\) \(\chi_{8041}(1432,\cdot)\) \(\chi_{8041}(1823,\cdot)\) \(\chi_{8041}(1866,\cdot)\) \(\chi_{8041}(1993,\cdot)\) \(\chi_{8041}(2087,\cdot)\) \(\chi_{8041}(2163,\cdot)\) \(\chi_{8041}(2206,\cdot)\) \(\chi_{8041}(2274,\cdot)\) \(\chi_{8041}(2461,\cdot)\) \(\chi_{8041}(2503,\cdot)\) \(\chi_{8041}(2554,\cdot)\) \(\chi_{8041}(2648,\cdot)\) \(\chi_{8041}(2690,\cdot)\) \(\chi_{8041}(2724,\cdot)\) \(\chi_{8041}(2767,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((6580,2366,562)\) → \((e\left(\frac{7}{10}\right),i,e\left(\frac{13}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 8041 }(1305, a) \) \(-1\)\(1\)\(e\left(\frac{32}{35}\right)\)\(e\left(\frac{197}{420}\right)\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{221}{420}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{19}{60}\right)\)\(e\left(\frac{26}{35}\right)\)\(e\left(\frac{197}{210}\right)\)\(e\left(\frac{37}{84}\right)\)\(e\left(\frac{25}{84}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8041 }(1305,a) \;\) at \(\;a = \) e.g. 2