sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([294,105,260]))
pari:[g,chi] = znchar(Mod(1305,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(13,\cdot)\)
\(\chi_{8041}(310,\cdot)\)
\(\chi_{8041}(404,\cdot)\)
\(\chi_{8041}(497,\cdot)\)
\(\chi_{8041}(574,\cdot)\)
\(\chi_{8041}(633,\cdot)\)
\(\chi_{8041}(701,\cdot)\)
\(\chi_{8041}(744,\cdot)\)
\(\chi_{8041}(1041,\cdot)\)
\(\chi_{8041}(1084,\cdot)\)
\(\chi_{8041}(1135,\cdot)\)
\(\chi_{8041}(1228,\cdot)\)
\(\chi_{8041}(1262,\cdot)\)
\(\chi_{8041}(1271,\cdot)\)
\(\chi_{8041}(1305,\cdot)\)
\(\chi_{8041}(1432,\cdot)\)
\(\chi_{8041}(1823,\cdot)\)
\(\chi_{8041}(1866,\cdot)\)
\(\chi_{8041}(1993,\cdot)\)
\(\chi_{8041}(2087,\cdot)\)
\(\chi_{8041}(2163,\cdot)\)
\(\chi_{8041}(2206,\cdot)\)
\(\chi_{8041}(2274,\cdot)\)
\(\chi_{8041}(2461,\cdot)\)
\(\chi_{8041}(2503,\cdot)\)
\(\chi_{8041}(2554,\cdot)\)
\(\chi_{8041}(2648,\cdot)\)
\(\chi_{8041}(2690,\cdot)\)
\(\chi_{8041}(2724,\cdot)\)
\(\chi_{8041}(2767,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((e\left(\frac{7}{10}\right),i,e\left(\frac{13}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(1305, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{197}{420}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{221}{420}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{197}{210}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{25}{84}\right)\) |
sage:chi.jacobi_sum(n)