sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([126,315,260]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1262,8041))
         
     
    
  
   | Modulus: |  \(8041\) |   |  
   | Conductor: |  \(8041\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(420\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{8041}(13,\cdot)\)
  \(\chi_{8041}(310,\cdot)\)
  \(\chi_{8041}(404,\cdot)\)
  \(\chi_{8041}(497,\cdot)\)
  \(\chi_{8041}(574,\cdot)\)
  \(\chi_{8041}(633,\cdot)\)
  \(\chi_{8041}(701,\cdot)\)
  \(\chi_{8041}(744,\cdot)\)
  \(\chi_{8041}(1041,\cdot)\)
  \(\chi_{8041}(1084,\cdot)\)
  \(\chi_{8041}(1135,\cdot)\)
  \(\chi_{8041}(1228,\cdot)\)
  \(\chi_{8041}(1262,\cdot)\)
  \(\chi_{8041}(1271,\cdot)\)
  \(\chi_{8041}(1305,\cdot)\)
  \(\chi_{8041}(1432,\cdot)\)
  \(\chi_{8041}(1823,\cdot)\)
  \(\chi_{8041}(1866,\cdot)\)
  \(\chi_{8041}(1993,\cdot)\)
  \(\chi_{8041}(2087,\cdot)\)
  \(\chi_{8041}(2163,\cdot)\)
  \(\chi_{8041}(2206,\cdot)\)
  \(\chi_{8041}(2274,\cdot)\)
  \(\chi_{8041}(2461,\cdot)\)
  \(\chi_{8041}(2503,\cdot)\)
  \(\chi_{8041}(2554,\cdot)\)
  \(\chi_{8041}(2648,\cdot)\)
  \(\chi_{8041}(2690,\cdot)\)
  \(\chi_{8041}(2724,\cdot)\)
  \(\chi_{8041}(2767,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((6580,2366,562)\) → \((e\left(\frac{3}{10}\right),-i,e\left(\frac{13}{21}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |       
    
    
      | \( \chi_{ 8041 }(1262, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{323}{420}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{179}{420}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{113}{210}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{67}{84}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)