Properties

Label 8041.dh
Modulus $8041$
Conductor $8041$
Order $56$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(56)) M = H._module chi = DirichletCharacter(H, M([28,21,12])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(32,8041)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8041\)
Conductor: \(8041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(56\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{56})$
Fixed field: Number field defined by a degree 56 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{8041}(32,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{37}{56}\right)\)
\(\chi_{8041}(604,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{55}{56}\right)\)
\(\chi_{8041}(978,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{23}{56}\right)\)
\(\chi_{8041}(1011,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{43}{56}\right)\)
\(\chi_{8041}(1341,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{53}{56}\right)\)
\(\chi_{8041}(1759,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{19}{56}\right)\)
\(\chi_{8041}(1957,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{1}{56}\right)\)
\(\chi_{8041}(2287,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{39}{56}\right)\)
\(\chi_{8041}(2650,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{45}{56}\right)\)
\(\chi_{8041}(2705,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{33}{56}\right)\)
\(\chi_{8041}(3442,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{27}{56}\right)\)
\(\chi_{8041}(3596,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{31}{56}\right)\)
\(\chi_{8041}(3816,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{51}{56}\right)\)
\(\chi_{8041}(4388,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{41}{56}\right)\)
\(\chi_{8041}(4762,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{9}{56}\right)\)
\(\chi_{8041}(5125,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{11}{56}\right)\)
\(\chi_{8041}(5268,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{29}{56}\right)\)
\(\chi_{8041}(6016,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{5}{56}\right)\)
\(\chi_{8041}(6071,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{25}{56}\right)\)
\(\chi_{8041}(6214,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{15}{56}\right)\)
\(\chi_{8041}(6434,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{3}{56}\right)\)
\(\chi_{8041}(6962,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{47}{56}\right)\)
\(\chi_{8041}(7380,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{17}{56}\right)\)
\(\chi_{8041}(7699,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{13}{56}\right)\)