Properties

Conductor 8041
Order 56
Real No
Primitive Yes
Parity Even
Orbit Label 8041.dh

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(8041)
 
sage: chi = H[32]
 
pari: [g,chi] = znchar(Mod(32,8041))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 8041
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 56
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 8041.dh
Orbit index = 86

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{8041}(32,\cdot)\) \(\chi_{8041}(604,\cdot)\) \(\chi_{8041}(978,\cdot)\) \(\chi_{8041}(1011,\cdot)\) \(\chi_{8041}(1341,\cdot)\) \(\chi_{8041}(1759,\cdot)\) \(\chi_{8041}(1957,\cdot)\) \(\chi_{8041}(2287,\cdot)\) \(\chi_{8041}(2650,\cdot)\) \(\chi_{8041}(2705,\cdot)\) \(\chi_{8041}(3442,\cdot)\) \(\chi_{8041}(3596,\cdot)\) \(\chi_{8041}(3816,\cdot)\) \(\chi_{8041}(4388,\cdot)\) \(\chi_{8041}(4762,\cdot)\) \(\chi_{8041}(5125,\cdot)\) \(\chi_{8041}(5268,\cdot)\) \(\chi_{8041}(6016,\cdot)\) \(\chi_{8041}(6071,\cdot)\) \(\chi_{8041}(6214,\cdot)\) \(\chi_{8041}(6434,\cdot)\) \(\chi_{8041}(6962,\cdot)\) \(\chi_{8041}(7380,\cdot)\) \(\chi_{8041}(7699,\cdot)\)

Values on generators

\((6580,2366,562)\) → \((-1,e\left(\frac{3}{8}\right),e\left(\frac{3}{14}\right))\)

Values

-11234567891012
\(1\)\(1\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{33}{56}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{13}{56}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{43}{56}\right)\)\(e\left(\frac{37}{56}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{56})\)