sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([28,7,44]))
pari:[g,chi] = znchar(Mod(6962,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(32,\cdot)\)
\(\chi_{8041}(604,\cdot)\)
\(\chi_{8041}(978,\cdot)\)
\(\chi_{8041}(1011,\cdot)\)
\(\chi_{8041}(1341,\cdot)\)
\(\chi_{8041}(1759,\cdot)\)
\(\chi_{8041}(1957,\cdot)\)
\(\chi_{8041}(2287,\cdot)\)
\(\chi_{8041}(2650,\cdot)\)
\(\chi_{8041}(2705,\cdot)\)
\(\chi_{8041}(3442,\cdot)\)
\(\chi_{8041}(3596,\cdot)\)
\(\chi_{8041}(3816,\cdot)\)
\(\chi_{8041}(4388,\cdot)\)
\(\chi_{8041}(4762,\cdot)\)
\(\chi_{8041}(5125,\cdot)\)
\(\chi_{8041}(5268,\cdot)\)
\(\chi_{8041}(6016,\cdot)\)
\(\chi_{8041}(6071,\cdot)\)
\(\chi_{8041}(6214,\cdot)\)
\(\chi_{8041}(6434,\cdot)\)
\(\chi_{8041}(6962,\cdot)\)
\(\chi_{8041}(7380,\cdot)\)
\(\chi_{8041}(7699,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{11}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(6962, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{51}{56}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{15}{56}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{41}{56}\right)\) | \(e\left(\frac{47}{56}\right)\) |
sage:chi.jacobi_sum(n)