sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([9,88]))
pari:[g,chi] = znchar(Mod(2428,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(34,\cdot)\)
\(\chi_{6223}(69,\cdot)\)
\(\chi_{6223}(251,\cdot)\)
\(\chi_{6223}(272,\cdot)\)
\(\chi_{6223}(552,\cdot)\)
\(\chi_{6223}(755,\cdot)\)
\(\chi_{6223}(902,\cdot)\)
\(\chi_{6223}(993,\cdot)\)
\(\chi_{6223}(1301,\cdot)\)
\(\chi_{6223}(1560,\cdot)\)
\(\chi_{6223}(1721,\cdot)\)
\(\chi_{6223}(2043,\cdot)\)
\(\chi_{6223}(2176,\cdot)\)
\(\chi_{6223}(2358,\cdot)\)
\(\chi_{6223}(2365,\cdot)\)
\(\chi_{6223}(2428,\cdot)\)
\(\chi_{6223}(2589,\cdot)\)
\(\chi_{6223}(2876,\cdot)\)
\(\chi_{6223}(3415,\cdot)\)
\(\chi_{6223}(3471,\cdot)\)
\(\chi_{6223}(3597,\cdot)\)
\(\chi_{6223}(3618,\cdot)\)
\(\chi_{6223}(3709,\cdot)\)
\(\chi_{6223}(3884,\cdot)\)
\(\chi_{6223}(3898,\cdot)\)
\(\chi_{6223}(4052,\cdot)\)
\(\chi_{6223}(4185,\cdot)\)
\(\chi_{6223}(4339,\cdot)\)
\(\chi_{6223}(4353,\cdot)\)
\(\chi_{6223}(4416,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{1}{14}\right),e\left(\frac{44}{63}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(2428, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{97}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{1}{18}\right)\) |
sage:chi.jacobi_sum(n)