sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([99,58]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(993,6223))
         
     
    
  
   | Modulus: |  \(6223\) |   |  
   | Conductor: |  \(6223\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(126\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{6223}(34,\cdot)\)
  \(\chi_{6223}(69,\cdot)\)
  \(\chi_{6223}(251,\cdot)\)
  \(\chi_{6223}(272,\cdot)\)
  \(\chi_{6223}(552,\cdot)\)
  \(\chi_{6223}(755,\cdot)\)
  \(\chi_{6223}(902,\cdot)\)
  \(\chi_{6223}(993,\cdot)\)
  \(\chi_{6223}(1301,\cdot)\)
  \(\chi_{6223}(1560,\cdot)\)
  \(\chi_{6223}(1721,\cdot)\)
  \(\chi_{6223}(2043,\cdot)\)
  \(\chi_{6223}(2176,\cdot)\)
  \(\chi_{6223}(2358,\cdot)\)
  \(\chi_{6223}(2365,\cdot)\)
  \(\chi_{6223}(2428,\cdot)\)
  \(\chi_{6223}(2589,\cdot)\)
  \(\chi_{6223}(2876,\cdot)\)
  \(\chi_{6223}(3415,\cdot)\)
  \(\chi_{6223}(3471,\cdot)\)
  \(\chi_{6223}(3597,\cdot)\)
  \(\chi_{6223}(3618,\cdot)\)
  \(\chi_{6223}(3709,\cdot)\)
  \(\chi_{6223}(3884,\cdot)\)
  \(\chi_{6223}(3898,\cdot)\)
  \(\chi_{6223}(4052,\cdot)\)
  \(\chi_{6223}(4185,\cdot)\)
  \(\chi_{6223}(4339,\cdot)\)
  \(\chi_{6223}(4353,\cdot)\)
  \(\chi_{6223}(4416,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((5589,638)\) → \((e\left(\frac{11}{14}\right),e\left(\frac{29}{63}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |       
    
    
      | \( \chi_{ 6223 }(993, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{31}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{7}{18}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)