Properties

Label 6223.ji
Modulus $6223$
Conductor $6223$
Order $126$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([27,110])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(34,6223)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6223\)
Conductor: \(6223\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{6223}(34,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6223}(69,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6223}(251,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6223}(272,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6223}(552,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6223}(755,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{6223}(902,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6223}(993,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6223}(1301,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6223}(1560,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6223}(1721,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6223}(2043,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6223}(2176,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6223}(2358,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6223}(2365,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6223}(2428,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{6223}(2589,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6223}(2876,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{6223}(3415,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{6223}(3471,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{6223}(3597,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{6223}(3618,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6223}(3709,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6223}(3884,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{6223}(3898,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6223}(4052,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6223}(4185,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6223}(4339,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{6223}(4353,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6223}(4416,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6223}(4759,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{1}{18}\right)\)