Properties

Label 6069.2869
Modulus $6069$
Conductor $2023$
Order $68$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,34,5]))
 
Copy content pari:[g,chi] = znchar(Mod(2869,6069))
 

Basic properties

Modulus: \(6069\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(846,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6069.ca

\(\chi_{6069}(13,\cdot)\) \(\chi_{6069}(55,\cdot)\) \(\chi_{6069}(370,\cdot)\) \(\chi_{6069}(412,\cdot)\) \(\chi_{6069}(727,\cdot)\) \(\chi_{6069}(769,\cdot)\) \(\chi_{6069}(1084,\cdot)\) \(\chi_{6069}(1126,\cdot)\) \(\chi_{6069}(1441,\cdot)\) \(\chi_{6069}(1798,\cdot)\) \(\chi_{6069}(1840,\cdot)\) \(\chi_{6069}(2155,\cdot)\) \(\chi_{6069}(2197,\cdot)\) \(\chi_{6069}(2512,\cdot)\) \(\chi_{6069}(2554,\cdot)\) \(\chi_{6069}(2869,\cdot)\) \(\chi_{6069}(2911,\cdot)\) \(\chi_{6069}(3226,\cdot)\) \(\chi_{6069}(3268,\cdot)\) \(\chi_{6069}(3583,\cdot)\) \(\chi_{6069}(3625,\cdot)\) \(\chi_{6069}(3940,\cdot)\) \(\chi_{6069}(3982,\cdot)\) \(\chi_{6069}(4339,\cdot)\) \(\chi_{6069}(4654,\cdot)\) \(\chi_{6069}(4696,\cdot)\) \(\chi_{6069}(5011,\cdot)\) \(\chi_{6069}(5053,\cdot)\) \(\chi_{6069}(5368,\cdot)\) \(\chi_{6069}(5410,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((2024,4336,3760)\) → \((1,-1,e\left(\frac{5}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(19\)\(20\)
\( \chi_{ 6069 }(2869, a) \) \(-1\)\(1\)\(e\left(\frac{33}{34}\right)\)\(e\left(\frac{16}{17}\right)\)\(e\left(\frac{23}{68}\right)\)\(e\left(\frac{31}{34}\right)\)\(e\left(\frac{21}{68}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{31}{34}\right)\)\(e\left(\frac{15}{17}\right)\)\(e\left(\frac{9}{17}\right)\)\(e\left(\frac{19}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6069 }(2869,a) \;\) at \(\;a = \) e.g. 2