sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2023, base_ring=CyclotomicField(68))
M = H._module
chi = DirichletCharacter(H, M([34,5]))
pari:[g,chi] = znchar(Mod(846,2023))
| Modulus: | \(2023\) | |
| Conductor: | \(2023\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(68\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2023}(13,\cdot)\)
\(\chi_{2023}(55,\cdot)\)
\(\chi_{2023}(132,\cdot)\)
\(\chi_{2023}(174,\cdot)\)
\(\chi_{2023}(293,\cdot)\)
\(\chi_{2023}(370,\cdot)\)
\(\chi_{2023}(412,\cdot)\)
\(\chi_{2023}(489,\cdot)\)
\(\chi_{2023}(531,\cdot)\)
\(\chi_{2023}(608,\cdot)\)
\(\chi_{2023}(650,\cdot)\)
\(\chi_{2023}(727,\cdot)\)
\(\chi_{2023}(769,\cdot)\)
\(\chi_{2023}(846,\cdot)\)
\(\chi_{2023}(888,\cdot)\)
\(\chi_{2023}(965,\cdot)\)
\(\chi_{2023}(1007,\cdot)\)
\(\chi_{2023}(1084,\cdot)\)
\(\chi_{2023}(1126,\cdot)\)
\(\chi_{2023}(1203,\cdot)\)
\(\chi_{2023}(1245,\cdot)\)
\(\chi_{2023}(1322,\cdot)\)
\(\chi_{2023}(1364,\cdot)\)
\(\chi_{2023}(1441,\cdot)\)
\(\chi_{2023}(1560,\cdot)\)
\(\chi_{2023}(1602,\cdot)\)
\(\chi_{2023}(1679,\cdot)\)
\(\chi_{2023}(1721,\cdot)\)
\(\chi_{2023}(1798,\cdot)\)
\(\chi_{2023}(1840,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290,1737)\) → \((-1,e\left(\frac{5}{68}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 2023 }(846, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{23}{68}\right)\) | \(e\left(\frac{37}{68}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{21}{68}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{35}{68}\right)\) |
sage:chi.jacobi_sum(n)