Properties

Label 2023.846
Modulus $2023$
Conductor $2023$
Order $68$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([34,5]))
 
Copy content pari:[g,chi] = znchar(Mod(846,2023))
 

Basic properties

Modulus: \(2023\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2023.ba

\(\chi_{2023}(13,\cdot)\) \(\chi_{2023}(55,\cdot)\) \(\chi_{2023}(132,\cdot)\) \(\chi_{2023}(174,\cdot)\) \(\chi_{2023}(293,\cdot)\) \(\chi_{2023}(370,\cdot)\) \(\chi_{2023}(412,\cdot)\) \(\chi_{2023}(489,\cdot)\) \(\chi_{2023}(531,\cdot)\) \(\chi_{2023}(608,\cdot)\) \(\chi_{2023}(650,\cdot)\) \(\chi_{2023}(727,\cdot)\) \(\chi_{2023}(769,\cdot)\) \(\chi_{2023}(846,\cdot)\) \(\chi_{2023}(888,\cdot)\) \(\chi_{2023}(965,\cdot)\) \(\chi_{2023}(1007,\cdot)\) \(\chi_{2023}(1084,\cdot)\) \(\chi_{2023}(1126,\cdot)\) \(\chi_{2023}(1203,\cdot)\) \(\chi_{2023}(1245,\cdot)\) \(\chi_{2023}(1322,\cdot)\) \(\chi_{2023}(1364,\cdot)\) \(\chi_{2023}(1441,\cdot)\) \(\chi_{2023}(1560,\cdot)\) \(\chi_{2023}(1602,\cdot)\) \(\chi_{2023}(1679,\cdot)\) \(\chi_{2023}(1721,\cdot)\) \(\chi_{2023}(1798,\cdot)\) \(\chi_{2023}(1840,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((290,1737)\) → \((-1,e\left(\frac{5}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 2023 }(846, a) \) \(-1\)\(1\)\(e\left(\frac{33}{34}\right)\)\(e\left(\frac{39}{68}\right)\)\(e\left(\frac{16}{17}\right)\)\(e\left(\frac{23}{68}\right)\)\(e\left(\frac{37}{68}\right)\)\(e\left(\frac{31}{34}\right)\)\(e\left(\frac{5}{34}\right)\)\(e\left(\frac{21}{68}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{35}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2023 }(846,a) \;\) at \(\;a = \) e.g. 2