Properties

Label 6069.ca
Modulus $6069$
Conductor $2023$
Order $68$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,34,49])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,6069)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6069\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2023.ba
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(19\) \(20\)
\(\chi_{6069}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{23}{68}\right)\)
\(\chi_{6069}(55,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{49}{68}\right)\)
\(\chi_{6069}(370,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{31}{68}\right)\)
\(\chi_{6069}(412,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{41}{68}\right)\)
\(\chi_{6069}(727,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{39}{68}\right)\)
\(\chi_{6069}(769,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{33}{68}\right)\)
\(\chi_{6069}(1084,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{47}{68}\right)\)
\(\chi_{6069}(1126,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{25}{68}\right)\)
\(\chi_{6069}(1441,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{55}{68}\right)\)
\(\chi_{6069}(1798,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{63}{68}\right)\)
\(\chi_{6069}(1840,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{9}{68}\right)\)
\(\chi_{6069}(2155,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{3}{68}\right)\)
\(\chi_{6069}(2197,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{1}{68}\right)\)
\(\chi_{6069}(2512,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{11}{68}\right)\)
\(\chi_{6069}(2554,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{61}{68}\right)\)
\(\chi_{6069}(2869,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{19}{68}\right)\)
\(\chi_{6069}(2911,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{53}{68}\right)\)
\(\chi_{6069}(3226,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{27}{68}\right)\)
\(\chi_{6069}(3268,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{45}{68}\right)\)
\(\chi_{6069}(3583,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{35}{68}\right)\)
\(\chi_{6069}(3625,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{37}{68}\right)\)
\(\chi_{6069}(3940,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{43}{68}\right)\)
\(\chi_{6069}(3982,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{29}{68}\right)\)
\(\chi_{6069}(4339,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{21}{68}\right)\)
\(\chi_{6069}(4654,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{59}{68}\right)\)
\(\chi_{6069}(4696,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{13}{68}\right)\)
\(\chi_{6069}(5011,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{67}{68}\right)\)
\(\chi_{6069}(5053,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{5}{68}\right)\)
\(\chi_{6069}(5368,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{7}{68}\right)\)
\(\chi_{6069}(5410,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{65}{68}\right)\)
\(\chi_{6069}(5725,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{15}{68}\right)\)