sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(2280))
M = H._module
chi = DirichletCharacter(H, M([0,1425,1368,160]))
pari:[g,chi] = znchar(Mod(6961,508288))
\(\chi_{508288}(49,\cdot)\)
\(\chi_{508288}(273,\cdot)\)
\(\chi_{508288}(1489,\cdot)\)
\(\chi_{508288}(3089,\cdot)\)
\(\chi_{508288}(3921,\cdot)\)
\(\chi_{508288}(4305,\cdot)\)
\(\chi_{508288}(5745,\cdot)\)
\(\chi_{508288}(6737,\cdot)\)
\(\chi_{508288}(6961,\cdot)\)
\(\chi_{508288}(8177,\cdot)\)
\(\chi_{508288}(8561,\cdot)\)
\(\chi_{508288}(9777,\cdot)\)
\(\chi_{508288}(10609,\cdot)\)
\(\chi_{508288}(10993,\cdot)\)
\(\chi_{508288}(12433,\cdot)\)
\(\chi_{508288}(14865,\cdot)\)
\(\chi_{508288}(15249,\cdot)\)
\(\chi_{508288}(16465,\cdot)\)
\(\chi_{508288}(17297,\cdot)\)
\(\chi_{508288}(17681,\cdot)\)
\(\chi_{508288}(19121,\cdot)\)
\(\chi_{508288}(20113,\cdot)\)
\(\chi_{508288}(20337,\cdot)\)
\(\chi_{508288}(21553,\cdot)\)
\(\chi_{508288}(21937,\cdot)\)
\(\chi_{508288}(23153,\cdot)\)
\(\chi_{508288}(23985,\cdot)\)
\(\chi_{508288}(24369,\cdot)\)
\(\chi_{508288}(25809,\cdot)\)
\(\chi_{508288}(26801,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{3}{5}\right),e\left(\frac{4}{57}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(6961, a) \) |
\(1\) | \(1\) | \(e\left(\frac{979}{2280}\right)\) | \(e\left(\frac{697}{2280}\right)\) | \(e\left(\frac{371}{380}\right)\) | \(e\left(\frac{979}{1140}\right)\) | \(e\left(\frac{143}{2280}\right)\) | \(e\left(\frac{419}{570}\right)\) | \(e\left(\frac{433}{570}\right)\) | \(e\left(\frac{185}{456}\right)\) | \(e\left(\frac{227}{228}\right)\) | \(e\left(\frac{697}{1140}\right)\) |
sage:chi.jacobi_sum(n)