Properties

Label 508288.49
Modulus $508288$
Conductor $127072$
Order $2280$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(2280)) M = H._module chi = DirichletCharacter(H, M([0,1425,912,2000]))
 
Copy content pari:[g,chi] = znchar(Mod(49,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(127072\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2280\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{127072}(47701,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.tj

\(\chi_{508288}(49,\cdot)\) \(\chi_{508288}(273,\cdot)\) \(\chi_{508288}(1489,\cdot)\) \(\chi_{508288}(3089,\cdot)\) \(\chi_{508288}(3921,\cdot)\) \(\chi_{508288}(4305,\cdot)\) \(\chi_{508288}(5745,\cdot)\) \(\chi_{508288}(6737,\cdot)\) \(\chi_{508288}(6961,\cdot)\) \(\chi_{508288}(8177,\cdot)\) \(\chi_{508288}(8561,\cdot)\) \(\chi_{508288}(9777,\cdot)\) \(\chi_{508288}(10609,\cdot)\) \(\chi_{508288}(10993,\cdot)\) \(\chi_{508288}(12433,\cdot)\) \(\chi_{508288}(14865,\cdot)\) \(\chi_{508288}(15249,\cdot)\) \(\chi_{508288}(16465,\cdot)\) \(\chi_{508288}(17297,\cdot)\) \(\chi_{508288}(17681,\cdot)\) \(\chi_{508288}(19121,\cdot)\) \(\chi_{508288}(20113,\cdot)\) \(\chi_{508288}(20337,\cdot)\) \(\chi_{508288}(21553,\cdot)\) \(\chi_{508288}(21937,\cdot)\) \(\chi_{508288}(23153,\cdot)\) \(\chi_{508288}(23985,\cdot)\) \(\chi_{508288}(24369,\cdot)\) \(\chi_{508288}(25809,\cdot)\) \(\chi_{508288}(26801,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2280})$
Fixed field: Number field defined by a degree 2280 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{2}{5}\right),e\left(\frac{50}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(49, a) \) \(1\)\(1\)\(e\left(\frac{11}{2280}\right)\)\(e\left(\frac{1673}{2280}\right)\)\(e\left(\frac{239}{380}\right)\)\(e\left(\frac{11}{1140}\right)\)\(e\left(\frac{847}{2280}\right)\)\(e\left(\frac{421}{570}\right)\)\(e\left(\frac{197}{570}\right)\)\(e\left(\frac{289}{456}\right)\)\(e\left(\frac{187}{228}\right)\)\(e\left(\frac{533}{1140}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(49,a) \;\) at \(\;a = \) e.g. 2