sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(127072, base_ring=CyclotomicField(2280))
M = H._module
chi = DirichletCharacter(H, M([0,1425,1368,160]))
pari:[g,chi] = znchar(Mod(54613,127072))
| Modulus: | \(127072\) | |
| Conductor: | \(127072\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2280\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{127072}(125,\cdot)\)
\(\chi_{127072}(581,\cdot)\)
\(\chi_{127072}(885,\cdot)\)
\(\chi_{127072}(1037,\cdot)\)
\(\chi_{127072}(1109,\cdot)\)
\(\chi_{127072}(1413,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((39711,47653,69313,14081)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{3}{5}\right),e\left(\frac{4}{57}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 127072 }(54613, a) \) |
\(1\) | \(1\) | \(e\left(\frac{979}{2280}\right)\) | \(e\left(\frac{697}{2280}\right)\) | \(e\left(\frac{371}{380}\right)\) | \(e\left(\frac{979}{1140}\right)\) | \(e\left(\frac{143}{2280}\right)\) | \(e\left(\frac{419}{570}\right)\) | \(e\left(\frac{433}{570}\right)\) | \(e\left(\frac{185}{456}\right)\) | \(e\left(\frac{227}{228}\right)\) | \(e\left(\frac{697}{1140}\right)\) |
sage:chi.jacobi_sum(n)