Properties

Label 127072.581
Modulus $127072$
Conductor $127072$
Order $2280$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(127072, base_ring=CyclotomicField(2280)) M = H._module chi = DirichletCharacter(H, M([0,285,1368,2240]))
 
Copy content pari:[g,chi] = znchar(Mod(581,127072))
 

Basic properties

Modulus: \(127072\)
Conductor: \(127072\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2280\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 127072.od

\(\chi_{127072}(125,\cdot)\) \(\chi_{127072}(581,\cdot)\) \(\chi_{127072}(885,\cdot)\) \(\chi_{127072}(1037,\cdot)\) \(\chi_{127072}(1109,\cdot)\) \(\chi_{127072}(1413,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2280})$
Fixed field: Number field defined by a degree 2280 polynomial (not computed)

Values on generators

\((39711,47653,69313,14081)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{3}{5}\right),e\left(\frac{56}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 127072 }(581, a) \) \(1\)\(1\)\(e\left(\frac{1679}{2280}\right)\)\(e\left(\frac{1037}{2280}\right)\)\(e\left(\frac{311}{380}\right)\)\(e\left(\frac{539}{1140}\right)\)\(e\left(\frac{1603}{2280}\right)\)\(e\left(\frac{109}{570}\right)\)\(e\left(\frac{533}{570}\right)\)\(e\left(\frac{253}{456}\right)\)\(e\left(\frac{43}{228}\right)\)\(e\left(\frac{1037}{1140}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 127072 }(581,a) \;\) at \(\;a = \) e.g. 2