Properties

Modulus $48$
Structure \(C_{2}\times C_{2}\times C_{4}\)
Order $16$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(48)
 
pari: g = idealstar(,48,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 16
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{4}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{48}(31,\cdot)$, $\chi_{48}(37,\cdot)$, $\chi_{48}(17,\cdot)$

Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{48}(1,\cdot)\) 48.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{48}(5,\cdot)\) 48.i 4 yes \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\)
\(\chi_{48}(7,\cdot)\) 48.b 2 no \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)
\(\chi_{48}(11,\cdot)\) 48.k 4 yes \(1\) \(1\) \(-i\) \(1\) \(i\) \(-i\) \(-1\) \(i\) \(-1\) \(-1\) \(i\) \(-1\)
\(\chi_{48}(13,\cdot)\) 48.j 4 no \(1\) \(1\) \(-i\) \(-1\) \(-i\) \(i\) \(1\) \(i\) \(-1\) \(-1\) \(i\) \(1\)
\(\chi_{48}(17,\cdot)\) 48.e 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{48}(19,\cdot)\) 48.l 4 no \(-1\) \(1\) \(-i\) \(1\) \(i\) \(i\) \(1\) \(-i\) \(1\) \(-1\) \(i\) \(-1\)
\(\chi_{48}(23,\cdot)\) 48.f 2 no \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\)
\(\chi_{48}(25,\cdot)\) 48.d 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{48}(29,\cdot)\) 48.i 4 yes \(-1\) \(1\) \(i\) \(-1\) \(i\) \(i\) \(-1\) \(i\) \(1\) \(-1\) \(-i\) \(1\)
\(\chi_{48}(31,\cdot)\) 48.g 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)
\(\chi_{48}(35,\cdot)\) 48.k 4 yes \(1\) \(1\) \(i\) \(1\) \(-i\) \(i\) \(-1\) \(-i\) \(-1\) \(-1\) \(-i\) \(-1\)
\(\chi_{48}(37,\cdot)\) 48.j 4 no \(1\) \(1\) \(i\) \(-1\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(-i\) \(1\)
\(\chi_{48}(41,\cdot)\) 48.h 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{48}(43,\cdot)\) 48.l 4 no \(-1\) \(1\) \(i\) \(1\) \(-i\) \(-i\) \(1\) \(i\) \(1\) \(-1\) \(-i\) \(-1\)
\(\chi_{48}(47,\cdot)\) 48.c 2 no \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)