# Properties

 Label 48.j Modulus $48$ Conductor $16$ Order $4$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(48, base_ring=CyclotomicField(4))

M = H._module

chi = DirichletCharacter(H, M([0,3,0]))

chi.galois_orbit()

[g,chi] = znchar(Mod(13,48))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$48$$ Conductor: $$16$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 16.e sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: $$\Q(\zeta_{16})^+$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$
$$\chi_{48}(13,\cdot)$$ $$1$$ $$1$$ $$-i$$ $$-1$$ $$-i$$ $$i$$ $$1$$ $$i$$ $$-1$$ $$-1$$ $$i$$ $$1$$
$$\chi_{48}(37,\cdot)$$ $$1$$ $$1$$ $$i$$ $$-1$$ $$i$$ $$-i$$ $$1$$ $$-i$$ $$-1$$ $$-1$$ $$-i$$ $$1$$