Properties

Label 48.41
Modulus $48$
Conductor $24$
Order $2$
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(48, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([0,1,1]))
 
Copy content pari:[g,chi] = znchar(Mod(41,48))
 

Basic properties

Modulus: \(48\)
Conductor: \(24\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{24}(5,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 48.h

\(\chi_{48}(41,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-6}) \)

Values on generators

\((31,37,17)\) → \((1,-1,-1)\)

Values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 48 }(41, a) \) \(-1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(-1\)\(-1\)\(1\)\(1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 48 }(41,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 48 }(41,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 48 }(41,·),\chi_{ 48 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 48 }(41,·)) \;\) at \(\; a,b = \) e.g. 1,2