![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4275, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([30,81,80]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4275, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([30,81,80]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(2612,4275))
        pari:[g,chi] = znchar(Mod(2612,4275))
         
     
    
  
   | Modulus: | \(4275\) |  | 
   | Conductor: | \(4275\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(180\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{4275}(47,\cdot)\)
  \(\chi_{4275}(137,\cdot)\)
  \(\chi_{4275}(272,\cdot)\)
  \(\chi_{4275}(302,\cdot)\)
  \(\chi_{4275}(308,\cdot)\)
  \(\chi_{4275}(347,\cdot)\)
  \(\chi_{4275}(473,\cdot)\)
  \(\chi_{4275}(662,\cdot)\)
  \(\chi_{4275}(833,\cdot)\)
  \(\chi_{4275}(902,\cdot)\)
  \(\chi_{4275}(992,\cdot)\)
  \(\chi_{4275}(1073,\cdot)\)
  \(\chi_{4275}(1127,\cdot)\)
  \(\chi_{4275}(1163,\cdot)\)
  \(\chi_{4275}(1202,\cdot)\)
  \(\chi_{4275}(1298,\cdot)\)
  \(\chi_{4275}(1328,\cdot)\)
  \(\chi_{4275}(1373,\cdot)\)
  \(\chi_{4275}(1517,\cdot)\)
  \(\chi_{4275}(1688,\cdot)\)
  \(\chi_{4275}(1847,\cdot)\)
  \(\chi_{4275}(1928,\cdot)\)
  \(\chi_{4275}(2012,\cdot)\)
  \(\chi_{4275}(2153,\cdot)\)
  \(\chi_{4275}(2183,\cdot)\)
  \(\chi_{4275}(2228,\cdot)\)
  \(\chi_{4275}(2372,\cdot)\)
  \(\chi_{4275}(2612,\cdot)\)
  \(\chi_{4275}(2702,\cdot)\)
  \(\chi_{4275}(2783,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1901,1027,1351)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{9}{20}\right),e\left(\frac{4}{9}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) | 
    
    
      | \( \chi_{ 4275 }(2612, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{180}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{137}{180}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)