Properties

Label 4275.2183
Modulus $4275$
Conductor $4275$
Order $180$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4275, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([150,27,100]))
 
Copy content pari:[g,chi] = znchar(Mod(2183,4275))
 

Basic properties

Modulus: \(4275\)
Conductor: \(4275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4275.hi

\(\chi_{4275}(47,\cdot)\) \(\chi_{4275}(137,\cdot)\) \(\chi_{4275}(272,\cdot)\) \(\chi_{4275}(302,\cdot)\) \(\chi_{4275}(308,\cdot)\) \(\chi_{4275}(347,\cdot)\) \(\chi_{4275}(473,\cdot)\) \(\chi_{4275}(662,\cdot)\) \(\chi_{4275}(833,\cdot)\) \(\chi_{4275}(902,\cdot)\) \(\chi_{4275}(992,\cdot)\) \(\chi_{4275}(1073,\cdot)\) \(\chi_{4275}(1127,\cdot)\) \(\chi_{4275}(1163,\cdot)\) \(\chi_{4275}(1202,\cdot)\) \(\chi_{4275}(1298,\cdot)\) \(\chi_{4275}(1328,\cdot)\) \(\chi_{4275}(1373,\cdot)\) \(\chi_{4275}(1517,\cdot)\) \(\chi_{4275}(1688,\cdot)\) \(\chi_{4275}(1847,\cdot)\) \(\chi_{4275}(1928,\cdot)\) \(\chi_{4275}(2012,\cdot)\) \(\chi_{4275}(2153,\cdot)\) \(\chi_{4275}(2183,\cdot)\) \(\chi_{4275}(2228,\cdot)\) \(\chi_{4275}(2372,\cdot)\) \(\chi_{4275}(2612,\cdot)\) \(\chi_{4275}(2702,\cdot)\) \(\chi_{4275}(2783,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1901,1027,1351)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{3}{20}\right),e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 4275 }(2183, a) \) \(1\)\(1\)\(e\left(\frac{97}{180}\right)\)\(e\left(\frac{7}{90}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{53}{180}\right)\)\(e\left(\frac{43}{45}\right)\)\(e\left(\frac{7}{45}\right)\)\(e\left(\frac{1}{180}\right)\)\(e\left(\frac{79}{180}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4275 }(2183,a) \;\) at \(\;a = \) e.g. 2