sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4275, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([150,27,100]))
pari:[g,chi] = znchar(Mod(2183,4275))
| Modulus: | \(4275\) | |
| Conductor: | \(4275\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(180\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4275}(47,\cdot)\)
\(\chi_{4275}(137,\cdot)\)
\(\chi_{4275}(272,\cdot)\)
\(\chi_{4275}(302,\cdot)\)
\(\chi_{4275}(308,\cdot)\)
\(\chi_{4275}(347,\cdot)\)
\(\chi_{4275}(473,\cdot)\)
\(\chi_{4275}(662,\cdot)\)
\(\chi_{4275}(833,\cdot)\)
\(\chi_{4275}(902,\cdot)\)
\(\chi_{4275}(992,\cdot)\)
\(\chi_{4275}(1073,\cdot)\)
\(\chi_{4275}(1127,\cdot)\)
\(\chi_{4275}(1163,\cdot)\)
\(\chi_{4275}(1202,\cdot)\)
\(\chi_{4275}(1298,\cdot)\)
\(\chi_{4275}(1328,\cdot)\)
\(\chi_{4275}(1373,\cdot)\)
\(\chi_{4275}(1517,\cdot)\)
\(\chi_{4275}(1688,\cdot)\)
\(\chi_{4275}(1847,\cdot)\)
\(\chi_{4275}(1928,\cdot)\)
\(\chi_{4275}(2012,\cdot)\)
\(\chi_{4275}(2153,\cdot)\)
\(\chi_{4275}(2183,\cdot)\)
\(\chi_{4275}(2228,\cdot)\)
\(\chi_{4275}(2372,\cdot)\)
\(\chi_{4275}(2612,\cdot)\)
\(\chi_{4275}(2702,\cdot)\)
\(\chi_{4275}(2783,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1901,1027,1351)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{3}{20}\right),e\left(\frac{5}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
| \( \chi_{ 4275 }(2183, a) \) |
\(1\) | \(1\) | \(e\left(\frac{97}{180}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{79}{180}\right)\) |
sage:chi.jacobi_sum(n)