| L(s) = 1 | + (0.927 + 0.374i)2-s + (0.719 + 0.694i)4-s + (−0.866 − 0.5i)7-s + (0.406 + 0.913i)8-s + (−0.309 − 0.951i)11-s + (0.788 + 0.615i)13-s + (−0.615 − 0.788i)14-s + (0.0348 + 0.999i)16-s + (0.275 − 0.961i)17-s + (0.0697 − 0.997i)22-s + (−0.469 − 0.882i)23-s + (0.5 + 0.866i)26-s + (−0.275 − 0.961i)28-s + (−0.719 − 0.694i)29-s + (−0.809 − 0.587i)31-s + (−0.342 + 0.939i)32-s + ⋯ |
| L(s) = 1 | + (0.927 + 0.374i)2-s + (0.719 + 0.694i)4-s + (−0.866 − 0.5i)7-s + (0.406 + 0.913i)8-s + (−0.309 − 0.951i)11-s + (0.788 + 0.615i)13-s + (−0.615 − 0.788i)14-s + (0.0348 + 0.999i)16-s + (0.275 − 0.961i)17-s + (0.0697 − 0.997i)22-s + (−0.469 − 0.882i)23-s + (0.5 + 0.866i)26-s + (−0.275 − 0.961i)28-s + (−0.719 − 0.694i)29-s + (−0.809 − 0.587i)31-s + (−0.342 + 0.939i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.246 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.246 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8005677922 - 1.030124287i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8005677922 - 1.030124287i\) |
| \(L(1)\) |
\(\approx\) |
\(1.415181195 + 0.08587064490i\) |
| \(L(1)\) |
\(\approx\) |
\(1.415181195 + 0.08587064490i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.927 + 0.374i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
| 13 | \( 1 + (0.788 + 0.615i)T \) |
| 17 | \( 1 + (0.275 - 0.961i)T \) |
| 23 | \( 1 + (-0.469 - 0.882i)T \) |
| 29 | \( 1 + (-0.719 - 0.694i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (-0.848 + 0.529i)T \) |
| 43 | \( 1 + (-0.984 - 0.173i)T \) |
| 47 | \( 1 + (-0.694 + 0.719i)T \) |
| 53 | \( 1 + (-0.970 - 0.241i)T \) |
| 59 | \( 1 + (-0.882 - 0.469i)T \) |
| 61 | \( 1 + (0.0348 - 0.999i)T \) |
| 67 | \( 1 + (-0.0697 - 0.997i)T \) |
| 71 | \( 1 + (0.997 + 0.0697i)T \) |
| 73 | \( 1 + (-0.139 - 0.990i)T \) |
| 79 | \( 1 + (-0.559 + 0.829i)T \) |
| 83 | \( 1 + (0.406 + 0.913i)T \) |
| 89 | \( 1 + (-0.882 + 0.469i)T \) |
| 97 | \( 1 + (0.0697 - 0.997i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.57537773051835950657703560718, −18.1165898162220420477049169092, −17.103721199691603042482620179583, −16.21012191521282937267334843785, −15.761669013479516177983154297000, −14.99870406391564151099347534743, −14.68452878997515515664261489384, −13.51863434478611254476260609580, −13.07923135521603759943380400036, −12.55152192865176051979392667776, −11.94620313232347293671322313057, −11.0897343373632935318480465387, −10.36736224767987783544357494100, −9.84916448549083177889132929885, −9.06273932022146096285765174096, −8.07520776632427984857294515282, −7.20580296265960967213779240544, −6.53273172490046214906720472638, −5.68524128463623098362229238886, −5.36971568217949631949472951410, −4.26180380269211574496778962830, −3.527765175557047847885978066109, −3.02985270687734901154242303098, −1.9786679543432466144013110854, −1.3923813769598551509087960577,
0.22667897190630249245037946775, 1.55802520277621980088919917700, 2.63174660857872477293499796680, 3.319870185359140310607683698883, 3.89159262294788157979461027951, 4.716747452006203675581696181570, 5.55402832291303966995055229804, 6.4232345063887529595390113718, 6.57813816424399261283107529197, 7.72965733770296185818685810881, 8.16606679183172383380009869087, 9.21384956027520593848974320746, 9.88335000771831228195983418751, 11.02785385979509426881401889770, 11.233296175221437864879199654512, 12.18281315827244177422028479203, 12.92658976438929800049599528797, 13.54140636217817643594985418187, 13.897641613787504383741314836556, 14.67752933295689770208260269370, 15.553930847251866720829999588779, 16.15756756195760731147211556212, 16.597571656166959430266751364575, 17.04702880496771836280945662011, 18.422146799884634381894387388663