sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4032, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,3,20,4]))
pari:[g,chi] = znchar(Mod(2201,4032))
\(\chi_{4032}(185,\cdot)\)
\(\chi_{4032}(425,\cdot)\)
\(\chi_{4032}(1193,\cdot)\)
\(\chi_{4032}(1433,\cdot)\)
\(\chi_{4032}(2201,\cdot)\)
\(\chi_{4032}(2441,\cdot)\)
\(\chi_{4032}(3209,\cdot)\)
\(\chi_{4032}(3449,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,3781,1793,577)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 4032 }(2201, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(i\) | \(i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) |
sage:chi.jacobi_sum(n)