sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2016, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,3,20,4]))
pari:[g,chi] = znchar(Mod(1445,2016))
Modulus: | \(2016\) | |
Conductor: | \(2016\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2016}(173,\cdot)\)
\(\chi_{2016}(437,\cdot)\)
\(\chi_{2016}(677,\cdot)\)
\(\chi_{2016}(941,\cdot)\)
\(\chi_{2016}(1181,\cdot)\)
\(\chi_{2016}(1445,\cdot)\)
\(\chi_{2016}(1685,\cdot)\)
\(\chi_{2016}(1949,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,1765,1793,577)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 2016 }(1445, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(i\) | \(i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) |
sage:chi.jacobi_sum(n)