Properties

Label 4032.gf
Modulus $4032$
Conductor $2016$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,15,20,4])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(185,4032)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4032\)
Conductor: \(2016\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2016.fx
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.118608432644346900933171742046091098112592780299359440267640832.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{4032}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(i\) \(i\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{4032}(425,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(-i\) \(-i\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{4032}(1193,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(-i\) \(-i\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{4032}(1433,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(i\) \(i\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{4032}(2201,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(i\) \(i\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{4032}(2441,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(-i\) \(-i\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{4032}(3209,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(-i\) \(-i\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{4032}(3449,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(i\) \(i\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\)