Properties

Modulus $39$
Structure \(C_{2}\times C_{12}\)
Order $24$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(39)
 
pari: g = idealstar(,39,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 24
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{39}(14,\cdot)$, $\chi_{39}(28,\cdot)$

Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{39}(1,\cdot)\) 39.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{39}(2,\cdot)\) 39.k 12 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{39}(4,\cdot)\) 39.j 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{39}(5,\cdot)\) 39.f 4 yes \(1\) \(1\) \(i\) \(-1\) \(i\) \(i\) \(-i\) \(-1\) \(-i\) \(-1\) \(1\) \(1\)
\(\chi_{39}(7,\cdot)\) 39.l 12 no \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{39}(8,\cdot)\) 39.f 4 yes \(1\) \(1\) \(-i\) \(-1\) \(-i\) \(-i\) \(i\) \(-1\) \(i\) \(-1\) \(1\) \(1\)
\(\chi_{39}(10,\cdot)\) 39.j 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{39}(11,\cdot)\) 39.k 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{39}(14,\cdot)\) 39.c 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\)
\(\chi_{39}(16,\cdot)\) 39.e 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{39}(17,\cdot)\) 39.h 6 yes \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{39}(19,\cdot)\) 39.l 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{39}(20,\cdot)\) 39.k 12 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{39}(22,\cdot)\) 39.e 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{39}(23,\cdot)\) 39.h 6 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{39}(25,\cdot)\) 39.b 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{39}(28,\cdot)\) 39.l 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{39}(29,\cdot)\) 39.i 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{39}(31,\cdot)\) 39.g 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(i\) \(i\) \(-1\) \(i\) \(1\) \(1\) \(-1\)
\(\chi_{39}(32,\cdot)\) 39.k 12 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{39}(34,\cdot)\) 39.g 4 no \(-1\) \(1\) \(i\) \(-1\) \(i\) \(-i\) \(-i\) \(-1\) \(-i\) \(1\) \(1\) \(-1\)
\(\chi_{39}(35,\cdot)\) 39.i 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{39}(37,\cdot)\) 39.l 12 no \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{39}(38,\cdot)\) 39.d 2 yes \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(-1\)