Properties

Label 39.1
Modulus $39$
Conductor $1$
Order $1$
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(39)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0]))
 
pari: [g,chi] = znchar(Mod(1,39))
 

Basic properties

Modulus: \(39\)
Conductor: \(1\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{1}(1,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 39.a

\(\chi_{39}(1,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((14,28)\) → \((1,1)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)
value at e.g. 2

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 39 }(1,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{39}(1,\cdot)) = \sum_{r\in \Z/39\Z} \chi_{39}(1,r) e\left(\frac{2r}{39}\right) = 1.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 39 }(1,·),\chi_{ 39 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{39}(1,\cdot),\chi_{39}(1,\cdot)) = \sum_{r\in \Z/39\Z} \chi_{39}(1,r) \chi_{39}(1,1-r) = 11 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 39 }(1,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{39}(1,·)) = \sum_{r \in \Z/39\Z} \chi_{39}(1,r) e\left(\frac{1 r + 2 r^{-1}}{39}\right) = -6.6719723196 \)