Properties

Label 3888.1223
Modulus $3888$
Conductor $648$
Order $54$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3888, base_ring=CyclotomicField(54)) M = H._module chi = DirichletCharacter(H, M([27,27,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1223,3888))
 

Basic properties

Modulus: \(3888\)
Conductor: \(648\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(54\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{648}(83,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3888.bn

\(\chi_{3888}(71,\cdot)\) \(\chi_{3888}(359,\cdot)\) \(\chi_{3888}(503,\cdot)\) \(\chi_{3888}(791,\cdot)\) \(\chi_{3888}(935,\cdot)\) \(\chi_{3888}(1223,\cdot)\) \(\chi_{3888}(1367,\cdot)\) \(\chi_{3888}(1655,\cdot)\) \(\chi_{3888}(1799,\cdot)\) \(\chi_{3888}(2087,\cdot)\) \(\chi_{3888}(2231,\cdot)\) \(\chi_{3888}(2519,\cdot)\) \(\chi_{3888}(2663,\cdot)\) \(\chi_{3888}(2951,\cdot)\) \(\chi_{3888}(3095,\cdot)\) \(\chi_{3888}(3383,\cdot)\) \(\chi_{3888}(3527,\cdot)\) \(\chi_{3888}(3815,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((2431,2917,1217)\) → \((-1,-1,e\left(\frac{1}{54}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 3888 }(1223, a) \) \(1\)\(1\)\(e\left(\frac{25}{27}\right)\)\(e\left(\frac{43}{54}\right)\)\(e\left(\frac{13}{54}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{23}{27}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{47}{54}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3888 }(1223,a) \;\) at \(\;a = \) e.g. 2